
Eve: A Scalable Network Client Emulator

Hani T. Jamjoom� Kang G. Shin
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, MI 48109-2122

�jamjoom, kgshin�@eecs.umich.edu

Abstract

Client emulation tools play a central role in the performance evaluation, capacity planning, and work-
load characterization of servers. However, traditional emulation tools, because of their limited scalability
and extensibility, fail to keep up with servers as they increase in complexity and performance. In this
paper, we propose Eve, a scalable client emulation tool that is capable of stress-testing powerful servers.
Eve relies on an open and modular architecture that provides a simple and extensible programming envi-
ronment. By incorporating I/O call handing into its user-thread library, Eve is capable of simultaneously
emulating thousands of clients. Furthermore, Eve uses a distributed shared variable (DSV) core to facil-
itate communication between different clients, thus enhancing scalability to multiple machines.

1 Introduction

The importance of emulating real user demands to evaluate the performance of servers has long been rec-
ognized. However, the advent of high-capacity e-commerce servers has elevated the complexity of per-
formance analysis to a much higher level. Not only have client models become more complicated, but
also proper analysis involves an accurate emulation of thousands, if not tens of thousands, of simultaneous
clients. Consequently, inaccurate measurements can cause improper provisioning of a server’s capacity,
which can be disastrous, especially for mission or business-critical applications. It is therefore important to
develop an efficient tool for emulating client behaviors.

Figure 1 shows the architecture of a typical client emulator where a centralized manager or process
uses user-defined configuration parameters to start the desired workload, represented by clients sending
requests to the server. Traditionally, client emulators are built over the popular thread abstraction, where each
thread represents a single client. Threading is attractive because straight-line codes (or scripts) are easily
parallelized to emulate multiple clients. However, existing threading implementations become problematic
when a very large number of clients are emulated because of their high resource and management overhead.
Two mechanisms are commonly used to overcome this limitation. One mechanism simply limits the number
of threads or clients [10]; a client waits for response from the server before issuing a new request. The
authors of [4, 18] have shown that this can significantly impact the performance numbers since it does not
sustain a specific request rate. Instead of threads, an event-driven design that is based on non-blocking I/O
is used to sustain the request rate [4], but this incurs added complexity.

�The work in this paper is supported in part by the Saudi Arabian Ministry of Higher Education, the US National Science
Foundation under Grant E1A-9806280, and Hewllet Packard’s University Program

Figure 1: Request model for a typical client emulator

The heart of the design challenge is scalability. On one hand, client emulators should be powerful
enough to model complex concepts such as sessions and transactions. On the other hand, thousands of such
clients must be emulated in order to stress-test high-capacity servers. We believe that threading remains a
good abstraction in a client emulation tool, but lacks certain optimizations for this purpose. Furthermore,
an efficient communication abstraction is needed to facilitate client management, data collection, and event
synchronization.

Having just the flexibility for creating and managing new clients is not enough. Emulation tools must
also be “customizable.” Unlike commodity applications, client emulation tools are used by researchers
and system designers, and often require a large degree of application-specific customization. A monolithic
application is difficult to modify and extend in order to keep in pace with the evolution of server applications.
For this reason, a modular design should be used following similar design objectives to applications like
Apache [13] and microkernels like exokernel [12].

When creating a client emulation tool or software, the following four objectives should therefore be
considered: accuracy, efficiency, extensibility, and scalability. Simply, one would like a tool to accurately
represent a specified client model. It should efficiently minimize the amount of resources needed to execute
such a model. It should scale beyond the boundaries of a single machine. Finally, it should be easily extended
to create new and sophisticated client models and to allow a large degree of customization. Efficiency and
scalability are necessary for maximizing the number of clients that can concurrently be emulated. Accuracy
and extensibility are necessary for usability.

In this paper we present Eve, a client emulation tool for creating client models, that meets all four goals.
Eve consists of two powerful abstractions. The first is an optimized user-level thread library that simplifies
client emulation. This library combines the ease-of-programming of traditional threading implementations
with the improved performance of event-driven counterparts. The second abstraction is a distributed shared
variable (DSV) architecture that simplifies the management of, and supports the scalability of, clients across
multiple machines. Eve uses a modular design to integrate both abstractions into an extendable tool that can
stress-test powerful multi-tier servers.

This paper is organized as follows. We present related work in Section 2. We give a general overview
of Eve in Section 3 and discuss its implementation in Section 4. Section 5 gives a possible deployment
example. Section 6 studies some performance issues of Eve. The paper ends with concluding remarks in
Section 7.

2 Related Work

Table 1 contrasts the key differences between Eve and other popular client emulation tools with respect to
accuracy, efficiency, extensibility, and scalability. What distinguishes Eve from the other tools is its open

2

Table 1: Detailed comparison between popular emulation tools and Eve

architecture [16], where by modularizing all its components, Eve is able to achieve a high level of flexibility
and customizability. Tools like SpecWeb [10] and SURGE [5] follow a black-box architecture and are
created as a monolithic application. Any modification may require intimate knowledge of the tool’s internal
behavior. Some tools like HTTPerf [18] do provide hooks for extension, but they tend to be limited to
certain functionality. Other extremes, typical of commercial products like LoadRunner, completely close
their architectures thus limiting their extensibility.

The notion of an open architecture has been studied extensively in software engineering. Researchers as
well as system designers use this approach to implementing anything from web servers like Apache [13] to
microkernels like Mach [1] and Exokernel [12]. What is common among all these designs is a highly opti-
mized core that efficiently connects various components together to allow a high degree of customization.
Following this efficient communication core approach, Eve uses a lightweight distributed shared variable
abstraction similar to that on Midway [7] and Munin [6]. Emulated clients in Eve are then implemented as
plug-in libraries or modules that interact using this communication core.

As mentioned in Section 1, SURGE and HTTPerf implement their clients using a single process in con-
junction with non-blocking I/O to sustain the offered rate. Each I/O operation is considered as a separate
event, where an event can be creating a new connection, sending data, or timing out an existing connec-
tion. The single-process event-driven approach has two disadvantages. First, it does not scale easily across
multiple machines and across heterogeneous client population. Second, it is error-prone since programming
non-blocking I/O can be tricky.

Alternatively, one would like to use threads to simplify programming. However, traditional threading
libraries have their own shortcoming: they sacrifice performance for simplicity. Generally, thread imple-
mentations can be user-level, kernel-level, or a mix of the two [20]. Kernel-level threads offer the maximum
flexibility since the kernel knows when a thread blocks and can schedule another ready thread. However, this
is at the expense of high overhead in terms of both resource usage and switching time. User-level threads,
such as those in [2, 15, 21], on the other hand, are lighter-weight but since they rely on a smaller subset of
kernel threads or processes, only a fixed number of threads are allowed to block. A mix of the two, like the
one in [3], addressed this problem by providing kernel support (callbacks) to the user-level thread manager
that informs it of blocking activity. Unfortunately, this scheme requires kernel modification and may be too
slow to be useful when thousands of threads are emulated.

Eve-threads are a very light-weight user-level threading library that requires no special kernel support.
Unlike other user-level threading libraries, it integrates I/O operations into its abstraction, which is necessary
to maximize process utilization. Finally, Eve-threads deploy other performance enhancements that improve
both measurement (time tagging) and memory consumption (stack switching).

3

Figure 2: Design of Eve

3 Design

Eve is a programming environment that provides powerful mechanisms for specifying and emulating a wide
range of client models as well as taking measurements. Eve has the capability of running as many instances
of a given client model (or a combination of models) as necessary to analyze servers under test. As the need
for more resources arises, Eve can be configured to add more machines to expand its set of usable hosts.

Figure 2 shows a high-level design of Eve in which it is decomposed into three basic components:

� Modules constitute the basic building blocks of Eve. They are connected through a standard interface, and offer
a great deal of flexibility in extending and scaling Eve’s functionality.

� Communication Core glues all modules together and because it is distributed, Eve easily scales beyond the
boundary of a single machine.

� I/O-Threads are used to simplify the creation of a single client. This highly optimized user-level thread library
abstracts away all complexity of using non-blocking I/O without losing any performance advantage.

3.1 Eve Modules

To allow a high degree of customization, Eve implements all of its components, including its core compo-
nents, as modules. Core modules are used to initialize all client modules, facilitate communication between
these modules, and at the end of an experiment, allow for the reporting of measurements. The bare-bone
Eve (shaded boxes in Figure 2) consists of a loader module that initializes the Communication Core, sets up
environment variables based on the user-defined configuration parameters, then loads the Core modules.

A client model (e.g., one that mimics user shopping behavior) is encapsulated in a separate module and
uses a standard interface, called interface point, to connect to other modules. A module is implemented as
dynamic link library (DLL) and is loaded on demand. It shares information among other modules using the
Communication Core, for example, to update or obtain measurement data. Figure 2 highlights a generic
design of a client module where it shows the interaction between the client and the Communication Core,
and other modules.

Client modules can be constructed to dynamically link other modules that provide specific functionality.
For example, the request inter-arrival time generator is implemented as a separate module. Because it is
linked at run-time, only the configuration file needs to be changed to modify the behavior of clients.

4

Figure 3: State transition diagram. Transition conditions are represented in italicized text. Transition actions
of the scheduler are represented in boxed text.

3.2 Communication Core

Eve implements its communication core using a distributed shared variable (DSV) layer (Figure 2). It is used
by individual clients to communicate among themselves to share data and perform synchronization. Since a
typical client emulation environment data is mostly shared at the beginning, during the initialization stage,
and at the end, during the statistic collection stage, with the occasional data sharing during synchronization,
a simplified version of Munin [6] is used to implement this layer. Our design follows a client/server model,
where modules (the clients) use a thin stub to establishes a communication channel to the DSV repository
(the server). If a module implements multiple threads, then all threads share this single communication
channel.

Eve provides two standard calls to access shared and synchronization variables. They are eve in and
eve out, which are a restricted version of Linda’s in and out methods [8]. This abstraction hides the
majority of the underlying variable management from the programmer while unifying the access method
to all shared variables. Release consistency is chosen based on the observation that most statistical values
are updated only at the end of a simulation or at relatively coarse progress snapshots. Enforcing stronger
consistency would unnecessarily increase overhead.

To allow synchronization, Eve uses two other functions eve lock and eve unlock. These provide a
simple mutex context. A client that tries to lock a variable that is already locked by another client will block
until that client variable is unlocked. If more than one client are waiting for a lock, then the highest-priority
one will run first. Eve supports priority inheritance to prevent priority inversion.

3.3 I/O-Threads

The thread abstraction, because of its simplicity, is an ideal solution for emulating a wide variety of client
modules. However, one must be careful about the design of the thread architecture when thousands of
simultaneous threads must be supported. For example, if clients time out after 30 seconds, to sustain a rate
of 200 requests/sec (which can be handled by off-the-shelf web servers), then the worst-case number of
needed threads is ���� �� � ���� threads, one thread for each outstanding request.

Eve implements a lightweight thread library where each new request or client can be easily handled by
a separate thread. With potentially thousands of threads that need to be supported, a natural question is why
would our scheme work while others don’t? We identify five key design decisions enabled us to answer this

5

question:

� Integrate I/O handling into the design of the thread library to provide greater control over potentially
expensive I/O calls: By transforming blocking I/O calls into non-blocking ones, Eve can schedule and execute
a different task. Whenever the I/O call is completed, the calling thread is then placed in a ready queue (Figure 3).
These calls are then a natural place where a thread would yield to another ready thread.

� Enforce cooperative or non-preemptive multitasking [20] to maximize processor usage time and min-
imizes switch overhead: Implementing cooperative multitasking was a natural consequence of using non-
blocking I/O. By avoiding the use of preemption, we eliminated the need for signals, synchronization (to lock
thread control block structures) as well as the need to support reentrant functions. While implementing pre-
emptive multitasking, as opposed to cooperative multitasking, is not difficult, as we will see later, doing so
would have prevented other optimizations. One may wonder if cooperative multitasking negatively influences
the accuracy of real-time events. While this is true to some extent, usual client models are I/O-heavy, implying
a short period between two scheduling operations.

� Support priority queues to give soft real-time tasks, such as timers, priority over other tasks: Supporting
a large number of threads requires more than just a simple FIFO scheduler, typical of most user-level thread
implementations. Since some tasks, especially timeouts, should be handled immediately, priority scheduling
was necessary to support these soft real-time requirements [17].

� Use time tagging to timestamp when a thread is ready; this way the thread can compensate for the long
wait caused by supporting a large number of threads: The time delay between two scheduling-slices may
be long for a large number of threads. For example, if there are 1000 ready threads and each thread takes 1
msec, then there is an average thread delay of 0.5 sec. This delay can easily degrade accuracy of measurement
and is common in most client emulators. To minimize this inaccuracy, Eve uses time tagging where each thread
is tagged with the time when it became ready. A simple call can then be used to retrieve this time and can be
easily incorporated into the client code.

� Minimize resource and memory consumption per thread to support a large number of threads. Eve
provides a work stack for functions that require large stack space. Memory usage can explode easily when
supporting a large number of threads. Eve uses a 4KB stack per thread. Smaller stacks can also be used. While
we recognize that 4KB may not be enough in some cases, Eve introduces a large, shared, work stack that can
be used during one scheduling-slice of any thread. Since threads are only switched at specific instances, they
can safely take advantage of the larger stack space. This is another advantage for cooperative multitasking.

As we will show in the evaluation section, the above five features enabled us to maximize efficiency
while reducing overhead.

4 Implementation

Eve is implemented using the C programming language on the Linux operating system (kernel version
2.2.14). With the exception of a single header file, cross-platform porting is straightforward. Assuming that
the reader has prior knowledge of basic concepts behind threading [20] and DSV [22], we only describe the
parts that differ from traditional implementations. In general, we provide a high-level description of Eve’s
components but focus on their integration. Because of our layered design, we give a bottom-up description
of our implementation (i.e., I/O-threads, Communication Core, and Modules). This will give better insight
into the inter-working of each component.

6

Figure 4: Eve scheduler

4.1 I/O-Thread

The implementation of I/O-threads library complies with the POSIX threads standard [14].1 Essentially,
the library provides calls to create or kill a thread, and yield to another thread: eve create, eve exit,
and eve yield, respectively. A Thread Control Block (TCB) is associated with each thread (Figure 4) that
holds four elements:

� a memory pointer that points to the thread stack region in the heap and is allocated when the thread is created,

� CPU registers including the current program counter (PC) and stack pointer (SP),

� a file descriptor (FD) that indicates the threads’ interest in performing an I/O operation, and

� a time field (TF) that is used to time out an I/O operation, implement event timers, and support time tagging.

Creating a thread is straightforward. When eve create is called, the registers of the calling thread are
saved in its TCB and a new TCB and local stack is created for the new thread. The new stack is then loaded
with the created thread’s function arguments and return function pointer; the SP is updated with the new
stack’s value. The PC is also updated with the new function to run; finally, a long jump is executed.

Figure 4 shows the architecture of our scheduler which also implements priority scheduling. Eve has two
priorities: hi for running soft real-time tasks, such as timers, and low for running everything else. Whenever
a thread issues a yield call, the scheduler is executed to insert the yielding thread in the appropriate queue
and to determine the next thread to run. Eve’s scheduler is stateless. The actual code is an inline function
that uses the yielding thread’s stack space to complete its operations. This approach minimizes the number
of context switches, but requires storing the priority queues in the global address space.

I/O-threads integrate non-blocking I/O into its abstraction to maximize its throughput. All I/O calls are
implemented as wrapper-functions that will issue the I/O request, set the corresponding FD and TF fields in
the TCB, and then cause the calling thread to yield to another one. Currently, Eve supports commonly-used
I/O function: accept, connect, send, receive, read, write, open, and close. Timers are
implemented similarly by only setting the TF filed.

A thread can block for three reasons: waiting for I/O to complete, for a timer to expire, or for a mutex
to unlock (Figure 3). The scheduler uses the select system call to determine if an I/O function has com-
pleted or a timeout has expired. If either condition is met, the corresponding threads are then moved to the
ready queue. Using select has its disadvantages. As shown in [19], Real-Time Signals or /dev/poll can
significantly improve system performance. Unfortunately, both methods either lack some necessary capa-
bilities (e.g., implementing connect) or lack support by other operating systems. Hence, we will migrate
to one of these schemes as they mature.

1The time of this writing, signals are not fully supported

7

Figure 5: Architecture of the Communication Core

When a large number of threads are supported, a delay may occur between the time the thread is ready
and the time it is run. This delay is characterized by the average queuing time of all threads, which can
negatively affect time measurements that are performed by threads. I/O-threads solve this problem by im-
plementing time tagging where the scheduler overwrites the TF field with time that the thread was moved to
the ready state. This value can be accessed via eve gettimeofready(). While this is only an approxima-
tion to the precise time that the I/O has completed, time tagging reduces the error from the average queuing
time of all threads to the average running time of a single thread.

As mentioned in Section 3, to reduce memory allocated for thread stacks, Eve provides a large work stack
allocated at the initialization stage that can be used by any thread, in addition to small per-thread stack. When
a thread is running, it can switch between the two stacks via the macro function eve stackswitch() that
switches the stack pointer (SP) between the thread’s local stack and the large shared work memory. Local
variables are allocated on the local stack, but continue to be accessible since x86 processors reference them
using the stack base pointer (BP). Data on the work stack is only guaranteed to be valid during a single
scheduling slice (i.e., between two yield calls). Since we are using cooperative multitasking, we are
guaranteed that no other thread will corrupt the stack. This allows us to allocate very minimal per-thread
stacks (allowing systems to scale to large number of threads), but still allow complex execution that requires
large runtime stacks.

4.2 Variable Sharing Across Modules

The Communication Core follows a client/server design where the server process, CC-server, is initialized
to listen to a well-known server TCP port. Modules (e.g., clients) will initiate a socket connection to the
server process, which, upon success, will cause the server process to create a separate worker-thread (using
I/O-threads) to handle the module’s requests. Unfortunately, sockets incur a higher initialization overhead
and slower message delivery for local calls than optimized IPC alternatives. However, unifying the com-
munication architecture (local vs. remote calls) allowed a machine-independent implementation that is also
cross-platform portable.

Variables are managed centrally by the CC-server. They are organized in a two-level directory where the
first-level directory corresponds to the module names and the second-level to the variable names (Figure 5).
Each shared variable is thus identified by the tuple (module name, variable name). Using the module name
as an identifier avoided name conflicts across different modules. Eve assumes a strong trust model where
modules can access variables from other modules by correctly specifying the corresponding values in the
variable identifier.

Accessing and modifying shared variables are done via eve in, and eve out. These calls provide a

8

Table 2: Currently supported modules

simple, unified approach to access all data. Additionally, eve add and eve remove are used to add and
remove module or variable directory entries. Each operation is atomic in the sense that the calling thread
will block until the corresponding operation has completed. Threads can freely share a single connection to
the CC-server since only one thread has access to the connection at a time. Eager release consistency [22]
is implemented where eve lock and eve unlock correspond to the traditional acquire and release syn-
chronization primitives. When a variable is unlocked, it will immediately update the values in the central
repository. Figure 6 shows an example of how shared variables can be used.

4.3 Connecting Modules

Eve modules are implemented as plug-in dynamic link libraries (DLLs) where each DLL is required to im-
plement two interface points, eve init and eve exit, for initialization and clean-up, respectively. Mod-
ules are free to export other functions to provide added functionality. A unique identifier is associated with
each module and is part of the modules configuration parameters. This identifier allows modules to refer-
ence each other’s shared variables as described in Section 4.2. Furthermore, the identifier is used to load
and unload modules using the eve load and eve unload primitives, respectively.

Upon successful initialization, a module is directly connected to the CC-server and can read its con-
figuration parameters that were installed by the loader module. Once all modules are initialized, then an
experiment can be started. The process of initializing Eve is relatively straightforward in the single host
configuration (highlighted by the numbered circles in Figure 2). When multiple hosts are used, one host
must be designated as the master to load the configuration parameters and synchronize the beginning and
end of the experiment with other hosts. The master also hosts the CC-server process. Once the master in-
stalls the experiment parameters, the other hosts start the necessary clients and then wait for the completion
of the experiment. Using a master/daemon approach provided Eve with a central point of control.

Table 2 summarizes the current modules that are supported by Eve. While existing modules provide
adequate functionality, our focus in this paper was to provide an architecture that can extend easily to match
the functionality of mainstream client emulation tools.

5 An Example: Simple Client

We illustrate the applicability of Eve with the following example that combines common features of typical
client emulation tools. Our example follows models similar to those proposed in [5, 9] where clients’ access
behaviors are divided into active and inactive periods. An active period represents a client clicking on a link
followed by the browser requesting the document and its embedded objects relatively quickly (basically, as

9

1 int NEW REQUEST() � // Connect to server, compose msg, send it, & get reply
2 eve connect ();
3 // Read cookie. Assume that server name = domain name and it is passed to the SIMPLE CLIENT as an argument
4 eve out(server name, cookie);
5 // Include cookie in message. In our implementation of compose next message (not shown), request follow zipf distribution.
6 message = compose next message(cookie);
7 // Send message and receive response. A timeout value is also associated with both operations. Here a constant value is passed.
8 if (eve send (sfd, message, TIMEOUT) < 0) return -1;
9 if (eve receive (sfd, message, TIMEOUT) < 0) return -1;
10 // Set the Cookie if available.
11 cookie = extract cookie(message);
12 eve in(server name, cookie);
13 return 0; �

14 void SIMPLE CLIENT () �
15 session length = pareto(ALPHA 1,BETA 1); // Use Pareto distribution for session length.
16 while (session length--) �
17 active period length = pareto(ALPHA 2,BETA 2); // Use Pareto distribution for active period length.
18 while (active period length--) �
19 next request time = weibull(ALPHA 3,BETA 3); // Use Weibull distribution for request inter-arrival times.
20 eve sleep(next request time);
21 if (new request() < 0) eve exit(0); // Get request and check if successful.
22 �
23 inactive period length = pareto(ALPHA 4,BETA 4); // Use Pareto distribution for inactive period length.
24 eve sleep(inactive period length);
25 �
26 eve lock("sc", "session count"); // lock the shared variable
27 eve in("sc", "session count", &cnt); // read recent value
28 cnt++;
29 eve out("sc", "session count", &cnt); // update value
30 eve unlock("sc", "session count"); � // unlock the shared variable
31 else eve exit(0); �

32 void EVE INIT () �
33 eve add("sc", "session count"); // initialize shared variables session count
34 while (1) �
35 next request time = poisson(LABMDA); // Use Poisson distribution for session inter-arrival times
36 eve sleep(next request time);
37 eve create(simple client); // Create a new thread for every session
38 ��

Figure 6: C-Code like implementation of simple client that support sessions and cookies. This program
omits irrelevant function parameters as well as error handling code.

fast as the browser can parse the requested web file and start new TCP connections). In contrast, inactive
periods represent clients’ think times which are normally much longer than the active period. We call the
combination of an active and inactive period a request episode. Therefore, as a client browses through a
web server, s/he is generating a series of request episodes which are further defined as a client session. If a
request from a given session is unsuccessful, the entire session is aborted.

Our simple client (Figure 6) implements the following four important features.

� A client arrival rate is sustained regardless of server response. Each client is represented by a new session. Each
session consists of a series of request episodes (active and inactive periods).

� A different probability distribution is associated with client arrivals, session length, request inter-arrival times
of an active period, number of requests in an active period, and the length of an inactive period.

� Cookies are supported so that servers can distinguish between client sessions.

10

� Statistics regarding server throughput in terms of sessions/sec are collected.

Figure 6 shows a slightly-modified version of the actual code that is used to implement the client. To
improve readability, we omit confusing function parameters and error handling code. The following four
subsections detail each of the four features while highlighting the usefulness of Eve.

5.1 Session Support

Supporting sessions in Eve is trivial. Basically, next request time (Figure 6 line 35) determines the
session’s arrival rate — implemented here to follow a Poisson distribution — and a new thread is associated
with every session. The function SIMPLE CLIENT uses a Pareto distribution (Figure 6 line 15) to determine
the client’s session length (i.e., number of request episodes). In each request episode, a series of requests
are issued (active period) (Figure 6 lines 18-21) followed by an inactive period (Figure 6 lines 23-24). If a
request is not successful, the entire session is aborted.

5.2 Distributions

Eve supports a variety of statistical distributions: Uniform, Poisson, Pareto, Weibull, and Zipf. Other dis-
tributions can be easily integrated into Eve. In our example, the client uses Pareto, Weibull, and Poisson
distributions to generate session length (Figure 6 line 15), active period length (Figure 6 line 17), inactive
period length (Figure 6 line 23), request inter-arrival times (Figure 6 line 19), and session inter-arrival times
(Figure 6 line 35). In each case, the distribution parameters are defined in the user-defined configuration
parameters which are automatically stored in the DSV repository upon initialization. Eve is not limited to a
statistical distribution to generate different client behaviors. A client can be configured to use a trace replay
module to base its behavior on pre-recorded traces.

5.3 Cookie Support

Cookies are signatures which are stored on host machines that allow servers to remember the “state” of
previous requests from the corresponding host. Cookies are primarily used in e-commerce transactions,
remembering user preferences and tracking user sessions. If Cookies were to be supported, then subsequent
requests to a domain (identified in the server’s reply) must include the same Cookie. In a typical emulation
tool, once a Cookie and the corresponding domain are extracted, they are distributed to all clients connected
to the same server.

DSV in Eve simplifies this task by having each Cookie stored in a separate shared variable. The first
client that obtains the Cookie would add a shared variable with the domain name of the Cookie as the
variable identifier (Figure 6 lines 11-12). Other clients can get the value of the Cookie by issuing a read
request, eve in, on the domain name (Figure 6 line 4). In our example, we assume the availability of
functions that extract from the server’s reply and add it to a request packet. In addition, it assumes that the
domain name is identical to the server name, although it can be a subset.

5.4 Collecting Statistics

Collecting statistics is simplified by the DSV where measurements can be updated by all participating
clients. In our example, we were interested in tracking the number of successful sessions. Therefore,
upon completion of a successful session, the client increments the corresponding shared variable before ex-

11

Figure 7: Testbed

iting (Figure 6 lines 26-30). Additional statistics can also be defined to indicate other variables such as the
throughput in number of requests, response time, number of failed connections, etc.

What is important about this simple example is that the client’s code does not change even in situations
where clients are distributed across multiple hosts. Furthermore, Eve has successfully hidden away most of
the complexity of managing distributed clients, scaling clients to stress-test powerful servers, and collecting
measurements.

6 Evaluation

We studied two aspects of Eve’s performance: basic operation overhead and maximum number of supported
clients. We used the testbed in Figure 7 to study Eve in a well-controlled environment. In all testing scenarios
a server machine (Intel Pentium-based PC with 1.7 GHz and 512 MBytes memory) was running off-the-shelf
Apache 1.3 web server. Two client machines (Pentium-based PCs 600 MHz with 512 MBytes memory)
connect to the server through a FastEthernet switch. These machines are used to test the performance of Eve
in both single and multi-host configurations. Since we only focus on the performance of Eve, client requests
follow a Poisson-distributed inter-arrival times, allowing our measurements to reach the desired confidence
level relatively quickly. Alternatively, using a heavy-tail distribution, such as Pareto, would require a very
long time for measurements to converge [11]. Measurements were repeated until the estimated error was
under 5% (with 95% confidence). Also, all requests were made to a single static file to maximize the
throughput of the server.

6.1 Operation Overhead

Table 3 shows the basic overhead for common Eve operations. As shown in the table, the cost of both cre-
ating and switching between threads is very small, thus enabling support of a large number of simultaneous
threads. I/O operation, however, requires more system resources partly because of our implementation (i.e.,
using select). However, even in such a case, it is relatively easy to support 1000 threads.

Accessing shared variables is the most expensive operations because of our use of socket streams. While
other implementations, such as local IPC calls, may reduce the overhead for local DSV accesses, it can not
dramatically improve the DSV’s performance in multi-host configurations. The need for strong consistency
is the primary reason behind this overhead. For a multi-host configuration, data updates must be performed
at the central server, which unfortunately also reduces the benefits of automatic data caching. We therefore
recommend designing clients to limit DSV access to the beginning and end of an experiment and minimally
access the DSV during the experiment.

12

Operation Cost
Creating a thread 4 usec
Switching between threads 0.63 usec
Average I/O call 25 usec
DSV initialization 340 usec
DSV access (server) 0.62 usec
DSV access (local) 100 usec
DSV access (remote) 210 usec

Table 3: Cost of operations in Eve

6.2 Client Support

We measured the resource requirements in terms of CPU utilization and memory requirements as the number
of simultaneous clients is increased. These measurements were collected from the /proc file system in
Linux. Figure 8 shows the resource requirements on a single machine (Pentium 600 MHz with 512 MBytes
of RAM). The figure shows two important points:

� The resource requirements grow linearly with the number of simultaneous connections. A linear fit
showed the cost of a single connection as 0.05% of the CPU and 29 KBytes of memory. Since the
CPU was the bottleneck in our test scenario, we did not evaluate Eve’s behavior when memory starts
thrashing.

� The number of simultaneous connections is estimated as offered load� average response time. There-
fore, the offered load is inversely proportional to the server’s response time. For example, if requests
have an average response time of 8 sec, then only 200 reqs/sec can be sustained by Eve.

Unfortunately, Eve does not provide an automatic method for detecting the maximum number of si-
multaneous clients that a host is able to support. This is basically done using a trial-and-error technique.
However, since the design of Eve easily scales to multiple hosts, the process of increasing the number of
simultaneous requests is relatively straightforward: starting daemon process on remote hosts and changing
a single configuration file. Neither the client models nor data measurements and collection needs to be
changed.

7 Conclusions and Future Work

Client emulation tools must not only be simple to use, but also accurate and scalable. They must also be
extensible to keep up with evolving server applications. In this paper we presented a new tool called Eve
which met these four design objectives. This was the result of the integration of three design decisions.
First, I/O-threads allowed client models to be implemented using traditional straight-line code and run with
little modifications. Second, distributed shared variables simplified communication between various compo-
nents of Eve. Finally, Eve’s modular design allowed for greater extensibility as well as application-specific
customization.

We are currently working on enhancing the functionality of Eve. In its current state, Eve does not
profile the overhead of clients, nor does it determine the maximum number of clients that can run on each
machine. Both operations mush be performed manually. In heterogeneous client machines, it is desirable to
automatically profile each machine to maximize its throughput. Some internal improvements that can also

13

Figure 8: Client Load

optimize the overall throughput of the system. We are currently improving the message exchange between
different components, i.e., using local IPC methods instead of standard sockets. We are also researching
alternative implementations to the select system call in I/O-threads, e.g., using /dev/poll.

8 Acknowledgements

We would like to acknowledge helpful discussions with, useful comments from, and the support of Sharad
Singhal of HP Research Labs, and Padmanabhan Pillai of Real-Time Computing Laboratory, University of
Michigan.

References

[1] ACCETTA, B., GOLUB, D., RASHID, R., TEVANIAN, A., AND YOUNG, M. Mach: A New Kernel Foundation
for UNIX Development. In Proceedings of Summer 1986 USENIX Conference (1986), pp. 93–112.

[2] ANDERSON, T. E. Fastthreads user’s manual. Tech. rep., University of Washington, January 1990.

[3] ANDERSON, T. E., BERSHAD, B. N., LAZOWSKA, E. E., AND LEVY, H. W. Scheduler Activations: Effective
Kernel Support for the User-Level management of Parallelism. ACM Transactions on Computer systems 10, 1
(February 1992), 53–79.

[4] BANGA, G., AND DRUSCHEL, P. Measuring the capacity of a web server. In Proceedings of The USENIX
Symposium on Internet Technologies and Systems (December 1997).

[5] BARFORD, P., AND CROVELLA, M. Generating Representative Web Workloads for Network and Server Per-
formance Evaluation. In In Proceedings of Performance’98/ACM Sigmetrics’98 (May 1998), pp. 151–160.

[6] BENNETT, J. K., CARTER, J. K., AND ZWAENEPOEL, W. Munin: Distributed Shared memory Based on
Type-Specific memory Coherence. In Proceedings of the Second ACM Symposium on Principles and Practice
of Parallel Programming (1990), pp. 168–176.

[7] BERSHAD, B. N., ZEKAUSKAS, M. J., AND SAWDON, W. A. The Midway Distributed Shared memory System.
In Proceedings IEEE COMPCON Conference (1993), IEEE, pp. 528–537.

[8] CARRIERO, N., GELERNTER, D., AND LEICHTER, J. Distributed Data Structures in Linda. In Proc. ACM
Symposium on Principles of Programming languages (1986), pp. 236–242.

14

[9] CHERKASOVA, L., AND PHAAL, P. Session Based Admission Control: a Mechanism for Improving Perfor-
mance of Commercial Web Sites. In Proceedings of Seventh International Workshop on Quality of Service (May
1999), IEEE/IFIP event.

[10] COMMITTEE, S. D. SPECweb . Tech. rep., April 1996. http://www.specbench.org/osg/web/.

[11] CROVELLA, M., AND LIPSKY, L. ong-Lasting Transient Conditions in Simulations with Heavy-Tailed Work-
loads. In In Proceedings of the 1997 Winter Simulation Conference (1997), pp. 1005–1012.

[12] ENGLER, D. R., KAASHOEK, M. F., AND O’TOOLE, J. W. Exokernel: An Operating System Architecture for
Application-Level Resource management. In In Proceedings of the 1995 ACM Symposium on Operating System
Principles (December 1995), ACM, pp. 251–266.

[13] FIELDING, R. T., AND KAISER, G. E. The Apache HTTP server project. 88–90.

[14] GALLMEISTER, B. O. POSIX.4 Programming for the Real World. O’Reilly and Associates, Inc., 1995.

[15] HAINES, M. On designing lightweight threads for substrate software. In Proceedings of the 1997 Annual
Technical Conference (1997), USENIX, pp. 243–255.

[16] KICZALES, G., LAMPING, J., LOPES, C. V., MENDHEKAR, A., AND MURPHY, G. Open Implementation
Design Guidelines . In International Conference on Software Engineering (May 1997), pp. 481–490.

[17] KRISHNA, C. M., AND SHIN, K. G. Real-Time Systems. The McGraw-Hill Companies, Inc., 1997.

[18] MOSBERGER, D., AND JIN, T. Httperf — A Tool for Measuring Web Server Performance. Tech. rep., HP
Research Labs. http://www.hpl.hp.com/personal/David Mosberger/httperf.html.

[19] PROVOS, N., AND LEVER, C. Scalable Network I/O in Linux. In Proceedings of the USENIX Technical
Conference, FREENIX track (June 2000).

[20] SILBERSCHATZ, A., GALVIN, P., AND GAGNE, G. Applied Operating System Concepts. John Wiley and Sons,
Inc., 2000.

[21] STEIN, D., AND SHAH, D. Implementing Lightweight Threads. In In Proceedings of 1992 USENIX Summer
conference (1992), pp. 1–9.

[22] TANENBAUM, A. S. Distributed Operating Systems. Prentice-Hall, Inc., 1995.

15

