2009 IEEE International Conference on Cloud Computing

Rule-based Problem Classification in IT Service Management

Yixin Diao, Hani Jamjoom, David Loewenstern
IBM Thomas J. Watson Research Center
P.O. Box 704, Yorktown Heights, NY 10598, USA
Email: {diao|jamjoom|davidloe} @us.ibm.com

Abstract

Problem management is a critical and expensive element
for delivering IT service management and touches various
levels of managed IT infrastructure. While problem man-
agement has been mostly reactive, recent work is studying
how to leverage large problem ticket information from sim-
ilar IT infrastructures to probatively predict the onset of
problems. Because of the sheer size and complexity of prob-
lem tickets, supervised learning algorithms have been the
method of choice for problem ticket classification, relying
on labeled (or pre-classified) tickets from one managed in-
frastructure to automatically create signatures for similar
infrastructures. However, where there are insufficient pre-
classified data, leveraging human expertise to develop clas-
sification rules can be more efficient. In this paper, we de-
scribe a rule-based crowdsourcing approach, where experts
can author classification rules and a social networking-
based platform (called xPad) is used to socialize and exe-
cute these rules by large practitioner communities. Using
real data sets from several large IT delivery centers, we
demonstrate that this approach balances between two key
criteria: accuracy and cost effectiveness.

1 Introduction

Improving service quality in IT infrastructure manage-
ment continues to be a critical driver for business growth.
While there are many aspects to achieving higher qual-
ity, proactive problem management is playing a vital role
as it strives to minimize the occurrence of incidents and
problems, and supports the overall Incident, Problem, and
Change (IP&C) management processes.

The IT Information Library (ITIL) defines problem man-
agement as the process of minimizing the adverse impact
of incidents and problems, and preventing their recurrence
[1]. In ITIL terminology, an incident is any event that is
not part of the standard operation and results in an ser-

978-0-7695-3840-2/09 $26.00 © 2009 IEEE
DOI 10.1109/CLOUD.2009.80

IEEE
221 @ computer
® pSOC|e

vice interruption, and a problem is the underlying cause of
one or more incidents. There are two aspects in the prob-
lem management process. Reactive problem management
is concerned with solving problems in response to the in-
cidents. Proactive problem management seeks to identify
the cause and trend of the incidents, and instigate remedial
actions before incidents occur in the first place. Consider-
ing outsourced environments where the service provider is
managing a large number of IT infrastructures for different
clients, proactive problem management can have a multi-
plicative benefit as learning from one IT environment can
be easily replicated to similar, but not necessarily identical
environments [2].

Since incidents and problems can occur at different lev-
els of the software and hardware stack, one major activ-
ity to facilitate proactive problem management is to cre-
ate leading indicators (a.k.a., signatures or failure codes),
which are used to classify incidents into groups for root
cause analysis and failure trend monitoring. Some example
incident categories include: application not available, disk-
usage threshold exceeded, system down, printer not print-
ing, and password reset. The incident categories is usually
determined through analyzing the incident records (a.k.a.,
problem tickets), which store incident details such as client
name, platform, failure descriptions, severity code, resolu-
tion approaches, and various time stamps.

The problem ticket classification problem is a class of
document classification problems in information science.
The document is composed of natural language text some
of which is structured and machine generated (e.g., from
event monitoring systems) and some of which is unstruc-
tured and user generated (e.g., from communication with
the clients). However, individual problem ticket instances
are not identified as machine or user generated.

Document classification techniques typically start from
textual analysis (or featurization), in which the document
content is divided into features (words or phrases) and
methods such as stemming, stop words, and compound term
processing are typically used to generate the feature set [3].

ty

Afterwards, the document is classified either by supervised
document classification where correct classification infor-
mation is available as part of the training data, or unsuper-
vised document classification where the classification must
be done entirely without reference to external information.
The former is applicable in our case, as the failure codes
are predefined in the problem management process. Vari-
ous machine learning and pattern recognition methods have
been studied in supervised document classification, such as
naive Bayes [4], TD-IDF [5], support vector machines [6],
kNN [7, 8], decision trees [9, 10], and neural networks [11].

Either or both of the above two steps (featurization and
classification) can be conducted automatically or manually,
and there have been a small number of studies compar-
ing expert-generated rules to supervised learning. Depend-
ing upon the domain, choice of representation, definition
of success, quality of data, time constraints, costs imposed
in knowledge acquisition, and costs imposed in cleaning
and labeling data, “automated” supervised learning can out-
perform “hand-crafted” expert systems [12], or vice-versa
[13]. It is still true that much supervised learning is used
not to outperform expert-generated rules but to substitute
for them, either to open the “knowledge acquisition bottle-
neck” [14] or because the goal is to learn something beyond
current expertise (or there is no expertise) as in data mining
[15].

In this paper we propose a rule-based crowdsourcing
approach with the objective of providing an effective and
scalable method for supporting proactive problem determi-
nation in a global service delivery environment. The pa-
per makes the following three contributions: (1) a simpli-
fied rule-based classification method that lowers the costs
of knowledge acquisition as well as the costs of data clean-
ing and labeling, (2) an xPad crowdsourcing platform for in-
creasing the reachability and consumability of classification
by large practitioner communities, and (3) a detailed exper-
imental comparison between hand-crafted rule set and su-
pervised learning with focus on classification accuracy and
cost effectiveness.

The remainder of this paper is organized as follows. Sec-
tion 2 overviews the problem ticket classification problem
and its challenges in IT service management. In Section 3
we present the proposed rule-based classification approach
and the rule lifecycle management framework. Section 4
discusses the architecture and prototype of the xPad crowd-
sourcing platform. Section 5 shows the experimental eval-
uation results using real data from several large IT delivery
centers. Our conclusions are contained in Section 6.

2 Proactive Problem Management

Figure 1 shows the process and operations of problem
management in a service delivery center. The service clients

S —

i Clients

IT Infrastructure

IT Infrastructure [

! Reactive Problem Management

Problem
Resolution

i
4 Ticketing
Systems

Proactive Problem Management

IT Infrastructure !

)| Problem Trend Root Cause Remedial
Classification| Analysis Analysis Actions

Figure 1. lllustrative process and operations
of problem management.

interact with the service provider through ticketing systems,
which coordinate ticket creation and access. The ticket
records are stored in the database and contain incident de-
tails such as client name, platform, failure descriptions, and
severity code. System administrators fetch the tickets from
the ticketing systems, identify and solve the problems in
response to the incidents, and close the tickets with doc-
umented resolution approaches. Periodically, quality ana-
lysts acquire a batch of tickets from the ticketing systems,
classify the tickets by assigning the failure code to each
ticket, analyzing the volume and trend of each failure class,
identifying the root causes, and taking remedial actions to
prevent or reduce incident recurrence.

Due to the high ticket volume, manually classifying each
ticket is time-consuming and sometimes impractical. The
ticket classification problem is essentially learning (or man-
ually crafting) a function from training data, where the input
is the incident record and the output is the class label of the
incident. After having seen a number of training examples
(i.e., pairs of incident and failure code), the learned func-
tion will automatically classify the tickets and thus improve
the productivity of the quality analysts. It may also improve
the quality of problem classification from the perspective of
consistency.

The problem management process requires the accurate
and comprehensive recording of incidents in order to iden-
tify the cause of the incidents and the trends, and instigate
remedial actions. In practice, however, the problem tick-
ets are typically not well documented regarding both the
incident descriptions and the resolution techniques. This
is especially true in a global delivery environment where
problem tickets are generated from a large number of IT
infrastructures for multiple clients. Moreover, there are in-
sufficient pre-classified tickets, which adversely impact the
quantity and quality of the training data. Since labeling data
is not cheap, sometimes the quality analysts apply the sam-
pling approach by labeling only a small set of tickets, which
reduces the available training examples. On the other hand,

222

poor data quality may suffer from the fact that not all the
labeled tickets are classified correctly, since the expertise of
the quality analysts varies.

There are other challenges arising from the scale of
global deployment. First, different delivery centers gener-
ally have a different mix of tickets and it is difficult to drive
data consistency. As different clients can use different event
monitoring systems, the machine-generated tickets are dis-
similar across delivery centers. This variation in vocabu-
lary can also come from humans. Although even in a single
deployment, the same incident and resolution may always
be described differently and the same type of tickets may
be classified differently due to the user’s own interpretation
of the failure code, this difference is magnified in global
deployment. Second, the ticket composition evolves over
time, when the new clients are onboarded, new delivery cen-
ters are created, or a new failure code taxonomy is adopted
to fit with a change in business requirements. All these dif-
ferences and changes result in scarcity of valid training data,
and require an effective means to build an adaptive classifi-
cation mechanism.

In fact, some of the above challenges also indicate pos-
sible approaches to the solutions. For example, the use of
machine-generated tickets means that a set of phrases asso-
ciated with specific classes of tickets could be developed a
priori to be used as features, requiring much less data than
would be necessary to derive useful phrases by statistical
methods. Furthermore, in this domain of problem ticket
classification, there is an existing source of expertise held
by the quality analysts. While it is more difficult to extract
their knowledge (e.g., in the form of rules), it is also in their
best interest because they can free up their time on ticket
classification (especially for recurrent incidents with large
volume) and focus on more intellectually challenging tasks.

While eliciting ticket classification knowledge sounds
similar to creating an expert system, it is different in that
expert systems typically involve three roles: domain ex-
perts to provide the knowledge, knowledge experts to cre-
ate the rules, and non-experts as the expert system users.
In contrast, considering the challenges and opportunities in
problem ticket classification, we propose a scalable crowd-
sourcing approach, where all three roles are performed by
the same community of the quality analysts. The rules will
be designed by the quality analysts and used by the quality
analysts.

This subtle change in the goal of knowledge acquisition
and deployment has the potential of increasing the quality
of the knowledge (since it is their own interest for getting
better rules). However, it also adds the challenges on devel-
oping a simple rule-base design and management approach
suitable for the mass, and leveraging the mass collaboration
enabled by Web 2.0 technologies.

3 Rule-based Classification

In this section we present a design for rule-based classifi-
cation. The classifier uses simple IF-THEN rules to classify
the tickets, and the rules are managed and updated based
on rule quality statistics. This design is crowdsourcing-
oriented, making the rules simple and scalable, so that the
quality analyst community can develop and use the rules
easily, effectively, and cooperatively.

3.1 Classification Rules

A rule-based classifier is composed of a set of rules.
Each rule is composed of a IF clause and a THEN clause.
The syntax for the IF clause may be as simple as pure con-
junctions of binary features (such as rules derived from de-
cision trees and constructed by ID3[16]), or as complicated
as arbitrary boolean expressions or probability statements.
Similarly, the method for combining rules to reach a classi-
fication may be as simple as “the THEN clause is the clas-
sification, and the rules must be disjoint so that there is no
conflict among them”, or arbitrarily complex.

In this paper we take a compromise approach to permit
sufficient expressive power while keeping the rules easy for
the users to write and understand, noting that the users are
experts in solving IT incidents and problems, but are rarely
trained in knowledge engineering. In our solution, the IF
clause includes patterns combined through logical ANDs or
ORs to a maximum of two levels. Each pattern specifies ei-
ther a word or a phrase, and a pattern matches a ticket if it
shares that word or phrase with the ticket, with case sensi-
tivity as a selectable option. The use of phrases as patterns is
of particular value when creating rules to handle machine-
generated text, such as error messages. The flexibility in
handling of case is important for human-input incident de-
scription and solution.

The rule matches the ticket if the boolean expression of
the IF clause evaluates to true where matching patterns are
“true” and non-matching patterns are “false.” The THEN
clause then names a ticket failure code, or class. To simplify
the rule base, we only consider the following two types of
rules.

e Inclusive rules: The inclusive rules take the following
format

IF (Pi1]|Pr2]| .. || Piny) && (Poal|Pa2ll ... || P2ny)
&& (Py1||Pss|| ... || Ps.ny) THEN FC

where P; ; indicates the j-th pattern in the i-th OR
group, F'C}; indicates the k-th failure code, || denotes
the logical OR operation, and && denotes the logical
AND operation. Each inclusive rule also has a confi-
dence score for arbitrating rule conflictions (which will
be described in detail below). Note that we only use

223

. Review &
Classify
tickets correct
Un]abeled labels
tickets
N
Labeled
Create & Score tickets
edit rules rules N~

Figure 2. Interactive learning process for
classification rules.

two layers of AND and OR, which in our experience
has been sufficient.

e Exclusive rules: The exclusive rules take the following
format

IF (Py1||Pya]| ... ||P1,,) THEN NOT FC,

Note that the exclusive rules take a simpler format. The
rules are valuablefor overruling inclusive rules by stat-
ing that certain patterns preclude certain classes. In
practice, the use of exclusive rules makes up for the
limited syntax of the inclusive rules.

These rule formats are chosen for ease in writing rules
rather than any advantage in classification. For example,
there is no featurization (pre-processing) pass: the patterns
in the IF clause correspond directly to the words or phrases
of tickets, but without any attempt to handle word stemming
or synonyms. It was felt that the advantages of featurization
in permitting the creation of a smaller number of more ver-
satile rules while still covering the same examples did not
make up for the added complexity in learning to author the
rules.

Evaluation of a ticket proceeds in two passes. First, all
exclusive rules are applied and the resulting failure code cat-
egories are excluded. Then, all inclusive rules for classes
not already excluded are applied. The classification of the
THEN clause of the inclusive rule with the highest confi-
dence is then associated with the ticket. In the case of ties
among inclusive rules with different THEN clauses, or if no
rule matches, the ticket is left unclassified.

3.2 Rule Lifecycle Management

In problem ticket classification, the process of labeling
data is not cheap, so we wish to generate our rule set using
the smallest number of labeled tickets possible while still
maintaining sufficient classification coverage and accuracy.
We achieve this goal using an interactive learning process,

similar to that discussed in [17]. This process, as shown in
Figure 2, consists of four steps. (1) A batch of unlabeled
tickets is classified by any existing rules (initially, there are
none). (2) The resulting mixture of labeled and unlabeled
tickets are reviewed by the user, and the labels are corrected
if necessary. (3) The existing rules are scored against the
labeled tickets. (4) The user reviews the rules by correct-
ing inaccurate rules and adding new rules where coverage
is poor. The above four steps iterate until the user is satis-
fied with the coverage and accuracy of the resulting rule set.
Note that in the interest of time and productivity, the user
is unnecessary to review all labels and make corrections in
Step 2. Typically, examining a few labels in each interac-
tive cycle is sufficient to identify the problematic rules or
the opportunities for new rules.

We define the following two rule statistics to quantify
the quality of the individual rules as well as the rule set.
Deriving these statistics depends on the existence of pre-
classified tickets.

e Coverage: The coverage metric defines the percentage
of tickets that can be matched by the rules. We calcu-
late coverage as

coverage = (TP + FP)/T (1)

where T'P (true positive) is the number of tickets in the
set that the rule correctly classifies, F'P (false positive)
is the number of tickets in the set that the rule matches
but incorrectly classifies, and 71" (total) is the number
of tickets in the set. Note that the coverage rate is typi-
cally a metric used for the whole rule set. However, we
can also use this metric to quantify the performance of
an individual rule or a subset of the rules dedicated for
one failure code. It this case, it generally makes more
sense to define 7" as the number of tickets belonging to
the failure code, so that the coverage is defined relative
to the size of this failure code class.

e Accuracy: The accuracy metric defines the percentage
of tickets that are correctly matched by the rules. We
calculate accuracy as

accuracy = TP/(TP + FP) (2)

Note that we define accuracy relative to the rule
matches, instead of the total number of tickets in the
data set. In this way, we can use accuracy as the mea-
sure of rule confidence, for example, if the number of
false positive is zero, we are 100% confident of this
rule.

The coverage and accuracy defined above are only for
inclusive rules only, but in the presence of exclusive rules.
This is because the existence of exclusive rules is to restrict

224

Table 1. An illustrative rule-based classifier
with rule quality statistics.

Total TP FN FP Coverage Accuracy

FC- 500 335 165 128 93% 72%
TOP10

CAPO1 File system 97 95 2 52 152% 65%

full

Rule 1 7 45 52 1 47% 98%

Rule 2 97 70 27 50 124% 58%

Rule3 o7 37 60 10 48% 78%

CAPO7 CPU/Mem 54 32 22 10 78% 76%

the scope of the inclusive rules, without introducing the log-
ical NOT (in the interest of keeping the rules simple for the
users). Thus, the exclusive rules are used to lower the cov-
erage and increase the accuracy of the rules. Generally, the
users are striking a balance between coverage and accuracy,
with more preference on accuracy.

For better rule management we organize the rules ac-
cording to the failure code (class). This helps the user to
focus on a subset of rules, evaluate their performance, and
make rule update and edit. Table 1 illustrates a rule-based
classifier called FC-TOPI10, where TP indicates the rule
matches a ticket and generates the correct classification, FN
indicates the rule fails to match a ticket, and FP indicates the
rule matches a ticket and generates an incorrect classifica-
tion. The rules are organized per failure code (e.g., there are
three rules for failure code CAPO1 - File system full). The
rule statistics are also provided at the classifier level, the
rule group level (per failure code), and the rule level. Note
that the coverage rate at the latter two levels is defined rel-
ative to the number of tickets belonging to the failure code.
Although it may appear strange to see a coverage rate larger
than 100%, it helps understand and update the individual
rules.

4 xPad Crowdsourcing Platform

In this section we describe our implementation of the
solution presented in Section 3, an xPad crowdsourcing
platform that supports rule-based classification by leverag-
ing the mass collaboration enabled by Web 2.0 technolo-
gies. Our approach combines rule-based classification with
crowdsourcing to leverage the network of user communities
and domain expertise and provide an easy means to update
and validate the rule base.

xPad is implemented on a LAMP (Linux, Apache,
MySQL, and PHP) stack with heavy use of AJAX (Asyn-
chronous JavaScript and XML) to give users an interactive

-
Online Spreadsheet
collaboration
g Upload & Tag <[:J
3 i
S 1
g K L
N Scripts (Perl, PHP,
§ Shell, etc) or D
s Data Sets (CSV)
s i ----------- Classify
N 1
o 1
3
g Validate Validate & .
5 scripts version data SANDBOX i
3 sets !
g :
S i
i
i
.. } R
i
[i
i

&----mmmd Micro

Data Sets Version blogs,

rankings,
etc

compile to perl

Storage Layer
X
. c
!
w =
w
a
2
E
T

Figure 3. High-level overview and information
flow of xPad

experience. xPad is designed to enable a large user commu-
nity to both author (or create) and consume (or run) rules
against community uploaded data sets. There are two types
of users that are of interest: rule authors and rule consumers,
with consumers executing the authored rules against up-
loaded data sets. Both type of users are expected to use
xPad as a collaborative environment for improving rule ef-
ficiency and sharing classified data sets.

Figure 3 shows a high-level overview of xPad, highlight-
ing how information flows through the system. Looking at
the life-cycle of classifying a data set, there are five dis-
tinct stages: (1,) script or rule authoring, (1;) data upload,
(2,) automatic classification, (2;) manual override, and (3)
data export. Here, X, and X} denotes two stages that can
happen in parallel by different users. Stages 1, and 1; are
performed in the Rule Editor and Upload and Tag in Fig-
ure 3, respectively. As we will describe shortly, users can
also upload executable classification scripts directly. Stages
24, 2p, and 3 are performed in the Online Spreadsheet. Fi-
nally, in all stages, xPad supports blog-like collaboration on
user activities.

That said, there are three primary components in xPad:
(1) an online spreadsheet editor, (2) a script sand-box, and
(3) a collaboration engine. The first is best described as
a simple interactive online spreadsheet. Users can upload
their data (shown in Upload and Tag in Figure 3). Once
uploaded, they are able to manually modify or apply user-
uploaded scripts or rules.

225

The second component is the script execution sand-box.
xPad allows users either to create classification rules using
the Rule Editor or to upload executable scripts authored us-
ing a variety of scripting languages, including Perl, PHP,
and shell script. Internally, xPad translates all rules to Perl
scripts. The structure of each script is fairly simple: it
must read CSV data from standard input and writes to stan-
dard output. Each line in the output is a three-tuple: (af-
fected row,classification code,confidence). Also, only af-
fected rows are expected to be piped to output.

Because xPad allows users to upload arbitrary executable
scripts, these scripts need to run in an isolated environment
to protect the security and integrity of the system (even if
users are not expected to author malicious code). That said,
before any script is executed, xPad creates an ephemeral
sand-box, copies the necessary data and executable files,
and runs the scripts against the data. The output is then
piped back to the user visualization logic, which in turn up-
dates the displayed table on the user’s browser.

To minimize the effect of user errors, xPad automatically
versions all data manipulation, particularly before script ex-
ecution. Here, we wanted to give users the ability to role
back any unintended changes. Additionally, it allows easy
comparisons between the efficacy of different scripts. Go-
ing forward, we see the use of sand-boxing diminishing as
users will rely more on the rule editor, which internally en-
sures that the rules are translated to safe scripts.

The last component of xPad is an integrated collabo-
ration engine. Here, xPad allows users to add discussion
threads against all user-created contents, including scripts,
data sets, etc. Each thread is tagged and can be filtered
across various dimensions.

S Experimental Evaluation

In this section we illustrate how the rule-based crowd-
sourcing classification approach can be used for problem
ticket classification, and also compare it with the supervised
learning approach.

Our evaluation is based on problem ticket classification
data collected from several large service delivery centers.
The data are collected over a period of one year, includ-
ing more than 20,000 problem tickets. However, the data
are not uniformly distributed across delivery centers; some
newer centers only have several months of data.

5.1 Evaluation Results

Table 2 shows the classification results based on the data
from one delivery center. Only the largest 10 classes are
shown in the table. We use one week of data (500 tickets) as
the training data to create the rules, and another four weeks
of data (2158 tickets) for testing. We use TP to denote true

Table 2. Rule-based classification results.
(TP: true positives, FN: false negatives, FP:
false positives.)

Failure Code Training Testing

Total TP FN | FP | Total TP FN FP
File system 97 94 3 7 317 287 30 42
close to full
CPU/memory 99 96 3 2 340 302 38 56
close to full
Unaccessible 30 25 5 13 113 74 39 51
/not pinging
Disk space 7 4 3 3 20 10 10 8
Service / 5 5 0 8 66 34 32 21
daemon down
OS issues 49 48 1 0 63 48 15 1
Password reset 7 5 2 0 53 47 6 5
/ unlock
ID creation 24 13 11 3 111 72 39 22
ID deletion 17 16 1 5 112 104 8 20
Reboot request 10 8 2 3 54 38 16 12
Total 345 314 31 44 1249 1016 | 223 | 238
Coverage 72% 58%
Accuracy 88% 81%

positives (the number of tickets correctly classified by rules
for their classes), FN to denote false negatives (the number
of tickets not classified by rules for their classes), and FP
to denote false positives (the number of tickets incorrectly
classified by rules for other classes).

Note that the above counts are calculated on a per class
basis. Since one ticket may result in rule matches from
several different classes, the overall coverage and accuracy
metrics calculated based on the sum of the above counts
(e.g., the accuracy of the training set is calculated as 314 /
358 = 88%) may be different from the actual metrics. How-
ever, we found the difference is not significant, and thus use
these aggregated metrics as an approximation of the overall
classifier performance.

5.2 Comparison with Supervised Learn-
ing

We compare the rule-based classification with several
learning algorithms such as binary decision tree and naive
Bayes. In the interest of space, in this paper we only show
the results from naive Bayes, which had better accuracy
compared to the other learning approaches we tested on this
data set.

Generally, supervised learning techniques perform well
in terms of accuracy, if enough labeled data are available.
We have found, however, that this assumption is not fully
satisfied when the cost of labeling data is prohibitively
large. For example, Table 3 is a comparison based on a
smaller training set (500 tickets), both the rule-based classi-
fier and the naive Bayes approach have about 80% of accu-

226

Table 3. Comparing rule-based classification
with naive Bayes - smaller data set. (TP: true
positives, FN: false negatives, FP: false posi-
tives.)

Table 4. Comparing rule-based classification
with naive Bayes - larger data set. (TP: true
positives, FN: false negatives, FP: false posi-
tives.)

Training Rule-hased classification naive Bayes Training Rule based classification naiive Bayes
Total ™ FN FP P FN FP Total TP FN FP TP FN FP
File system close to full 97 94 3 7 £l 6 10 File system close to full mn 323 43 7 319 52 120
HNot accessible / not pinging 30 25 3 13 25 3 1 Mot accessible / not pinging 1028 841 188 55 838 190 229
Service / daemon down 5 5 0 2 3 0 Service / daemon down 515 375 140 53 431 84 125
ID creation 24 13 1" 3 2 2 13 ID creation 47 k]| 86 229 325 92 340
156 137 19 3 140 16 30 2331 1870 462 344 1913 415 314
Accuracy 82% 82% Accuracy 84% 70%
Testing Testing
Total ™ FN FP P FN FP Total TP FN FP TP FN FP
File system close to full 317 287 30 42 292 25 142 File system close to full 370 323 47 11 316 54 107
Not accessible / not pinging 13 4 39 51 59 54 91 Not accessible / not pinging 1266 1048 218 54 1018 248 261
Service { daemon down 66 34 32 21 2 64 1 Service / daemon down 563 425 138 63 459 104 185
ID creation 11 72 39 2 100 1" 129 ID creation 502 365 137 251 359 143 378
507 467 140 136 453 154 363 2701 2161 540 379 2152 549 931
Accuracy % 56% Accuracy 85% T0%

racy in training, but the accuracy of naive Bayes deteriorates
to 56% in testing while the rule-based classifier sustains at
77%.

On the other hand, when a large amount of pre-classified
data are available, the supervised learning may also have
challenges in featurization and capturing the right phrases,
especially for machine-generated tickets. This is the case as
shown in Table 4. Although the classification performance
is consistent between training and testing for both the rule-
based classifier and naive Bayes, the naive Bayes approach
tends to have a higher number of false positives.

5.3 Cost Analysis

While the rule-based classifier has shown promising ac-
curacy results, it it also important to understand the com-
plexity and cost of creating and managing the rules. We use
the number of patterns (either words or phrases) rather than
the number of rules to quantify the classifier complexity,
and consider the time spent on getting these patterns as the
cost.

In our exercise, the first set of rules built for the largest
10 failure code classes, as shown in Table 2, has about 100
patterns (i.e., 10 patterns per failure code). Building this
rule set took about 5 hours, that is, 0.5 hour per failure code
class. Although spending more time can help to increase
the rule coverage and accuracy, at certain point, it will be
more productive to manually classifying the tickets instead
of finding the obscure and not repeatable patterns.

As we progress, the rule set grows from covering 10 fail-

ure codes to 29 failure codes and work has also been con-
ducted to update the rules for the first 10 failure codes in
response to ticket mix changes. The new rule set has 500
patterns (i.e., 17 patterns per failure code). This increases
the coverage from 60% to 70%, and still keep the accuracy
around 80%. The time spent is 1.5 hour per failure code on
average. Overall, we believe the cost of creating the rule
set is manageable, compared to the cost of labeling the tick-
ets. It also has the value of sharing the knowledge and rules
across the delivery centers to realize collaborative savings.

6 Conclusions and Future Work

Problem management is a critical and expensive element
for delivering IT service management and touches various
levels of managed IT infrastructure. While problem man-
agement has been mostly reactive, recent work is studying
how to leverage large problem ticket information from sim-
ilar IT infrastructures to probatively predict the on sit of
problems.

Because of the shear size and complexity of prob-
lem tickets, supervised learning algorithms have been the
method of choice for problem ticket classification, relying
on labeled (or pre-classified) tickets from one managed in-
frastructure to automatically create signatures for similar
infrastructures. However, where there are insufficient pre-
classified data, leveraging human expertise to develop clas-
sification rules can be more efficient. In this paper, we
describe a rule-based crowdsourcing approach, where ex-
perts can author classification rules and a social networking-

227

based platform (called xPad) is used to socialize and exe-
cute these rules by large practitioner communities. We also
provide a detailed study of the efficacy of rule-based clas-
sification, across two dimensions: accuracy and cost. We
show that well constructed (simple) rules can perform bet-
ter than supervised learning, and is cost effective as well.

There are several directions for future work. The most
interesting one is to study how to refine the rule editing pro-
cess by incorporating machine learning. The method pre-
sented in this paper does not explore methods combining
machine learning with knowledge acquisition. However,
there is a substantial body of work in this combination as ap-
plied to various domains ([14], [17], [18], among many oth-
ers). Finding the “sweet spot” minimizing effort by experts
on both of the sources of expert knowledge while maintain-
ing a given level of accuracy requires some effort and is
domain-specific; however, the domain of problem tickets is
large enough and has great enough business value that it
worth the effort.

In addition, it is also interesting to develop a method-
ology to streamline the process of identifying patterns in a
consistent and efficient way in response to new client on-
boarding or failure code changes. Furthermore, it is worthy
to study whether exploring the hierarchical structure of the
failure code can help to improve the accuracy of problem
ticket classification.

Acknowledgement

The authors would like to thank Jason Gast for many use-
ful comments and suggestions on understanding the prob-
lem management process and acquiring the knowledge for
ticket classification.

References

[1] “IT Infrastructure Library. ITIL Service Support, ver-
sion 2.3 Office of Government Commerce, June
2000.

[2] A. Bose, A. R. Heching, and S. Sahu, “A frame-
work for model based continuous improvement of
global it service delivery operations,” in Proceedings
of IEEE International Conference on Services Com-
puting, Honolulu, HI, pp. 197-204, 2008.

[3] B. Yu, “An evaluation of text classification methods
for literary study,” Literary and Linguistic Computing,
vol. 23, pp. 327-343, 2008.

[4] S.-B. Kim, K.-S. Han, H.-C. Rim, and S. H. Myaeng,
“Some effective techniques for naive bayes text classi-
fication,” IEEE Transactions on Knowledge and Data
Engineering, vol. 18, pp. 1457-1466, 2006.

[5] G. Salton and C. Buckley, “Term-weighting ap-
proaches in automatic text retrieval,” Information Pro-
cessing and Management, vol. 24, pp. 513-523, 1988.

[6] T. Joachims, Learning to Classify Text using Sup-
port Vector Machines. Kluwer Academic Publishers
/ Springer, 2002.

[7] R. Duda and P. Hart, Pattern Classification and Scene
Analysis. John Wiley & Sons, 1973.

[8] W. Cohen and H. Hirsh, “Joins that generalize: Text
classification using WHIRL,” 1998.

[9] C. Apté, F. Damerau, and S. Weiss, “Automated
learning of decision rules for text categorization,”
ACM Transactions on Information Systems, vol. 12,
pp. 233-251, 1994.

[10] J. R. Quinlan, C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers, 1993.

[11] M. E. Ruiz and P. Srinivasan, “Hierarchical text cat-
egorization using neural networks,” Inf. Retr., vol. 5,
pp. 87-118, January 2002.

[12] R. Michalski and R. Chilausky, “Knowledge acqui-
sition by encoding expert rules versus computer in-
duction from examples: a case study involving soy-
bean pathology,” International Journal of Human-
Computer Studies, vol. 51, pp. 239-263, 1999.

[13] A. Ben-David and E. Frank, “Accuracy of machine
learning models versus “hand crafted” expert systems
- a credit scoring case study,” Expert Syst. Appl.,
vol. 36, no. 3, pp. 5264-5271, 2009.

[14] T. Mitchell, S. Mahadevan, and L. Steinberg, “LEAP:
A learning apprentice for VLSI design,” 1985.

[15] 1. Witten and E. Frank, Data Mining: Practical Ma-
chine Learning Tools and Techniques. Morgan Kauf-
mann, second ed., 2005.

[16] J. R. Quinlan, “Induction of decision trees,” Machine
Learning, vol. 1, pp. 81-106, 1986.

[17] D. Loewenstern, S. Ma, and A. Salahshour, “PIC-
CIL: Interactive learning to support log file categoriza-
tion,” in ICAC ’05: Proceedings of the Second Inter-
national Conference on Automatic Computing, (Wash-
ington, DC, USA), pp. 311-312, IEEE Computer So-
ciety, 2005.

[18] G. Towell, J. Shavlik, and M. Noordewier, “Refine-
ment of approximate domain theories by knowledge-
based neural networks,” 1990.

228

