
Rule-based Problem Classification in IT Service Management

Yixin Diao, Hani Jamjoom, David Loewenstern
IBM Thomas J. Watson Research Center

P.O. Box 704, Yorktown Heights, NY 10598, USA
Email: {diao|jamjoom|davidloe}@us.ibm.com

Abstract

Problem management is a critical and expensive element
for delivering IT service management and touches various
levels of managed IT infrastructure. While problem man-
agement has been mostly reactive, recent work is studying
how to leverage large problem ticket information from sim-
ilar IT infrastructures to probatively predict the onset of
problems. Because of the sheer size and complexity of prob-
lem tickets, supervised learning algorithms have been the
method of choice for problem ticket classification, relying
on labeled (or pre-classified) tickets from one managed in-
frastructure to automatically create signatures for similar
infrastructures. However, where there are insufficient pre-
classified data, leveraging human expertise to develop clas-
sification rules can be more efficient. In this paper, we de-
scribe a rule-based crowdsourcing approach, where experts
can author classification rules and a social networking-
based platform (called xPad) is used to socialize and exe-
cute these rules by large practitioner communities. Using
real data sets from several large IT delivery centers, we
demonstrate that this approach balances between two key
criteria: accuracy and cost effectiveness.

1 Introduction

Improving service quality in IT infrastructure manage-

ment continues to be a critical driver for business growth.

While there are many aspects to achieving higher qual-

ity, proactive problem management is playing a vital role

as it strives to minimize the occurrence of incidents and

problems, and supports the overall Incident, Problem, and

Change (IP&C) management processes.

The IT Information Library (ITIL) defines problem man-

agement as the process of minimizing the adverse impact

of incidents and problems, and preventing their recurrence

[1]. In ITIL terminology, an incident is any event that is

not part of the standard operation and results in an ser-

vice interruption, and a problem is the underlying cause of

one or more incidents. There are two aspects in the prob-

lem management process. Reactive problem management

is concerned with solving problems in response to the in-

cidents. Proactive problem management seeks to identify

the cause and trend of the incidents, and instigate remedial

actions before incidents occur in the first place. Consider-

ing outsourced environments where the service provider is

managing a large number of IT infrastructures for different

clients, proactive problem management can have a multi-

plicative benefit as learning from one IT environment can

be easily replicated to similar, but not necessarily identical

environments [2].

Since incidents and problems can occur at different lev-

els of the software and hardware stack, one major activ-

ity to facilitate proactive problem management is to cre-

ate leading indicators (a.k.a., signatures or failure codes),

which are used to classify incidents into groups for root

cause analysis and failure trend monitoring. Some example

incident categories include: application not available, disk-

usage threshold exceeded, system down, printer not print-

ing, and password reset. The incident categories is usually

determined through analyzing the incident records (a.k.a.,

problem tickets), which store incident details such as client

name, platform, failure descriptions, severity code, resolu-

tion approaches, and various time stamps.

The problem ticket classification problem is a class of

document classification problems in information science.

The document is composed of natural language text some

of which is structured and machine generated (e.g., from

event monitoring systems) and some of which is unstruc-

tured and user generated (e.g., from communication with

the clients). However, individual problem ticket instances

are not identified as machine or user generated.

Document classification techniques typically start from

textual analysis (or featurization), in which the document

content is divided into features (words or phrases) and

methods such as stemming, stop words, and compound term

processing are typically used to generate the feature set [3].

1

2009 IEEE International Conference on Cloud Computing

978-0-7695-3840-2/09 $25.00 © 2009 IEEE
DOI 10.1109/CLOUD.2009.80

206

2009 IEEE International Conference on Cloud Computing

978-0-7695-3840-2/09 $25.00 © 2009 IEEE
DOI 10.1109/CLOUD.2009.80

206

2009 IEEE International Conference on Cloud Computing

978-0-7695-3840-2/09 $26.00 © 2009 IEEE
DOI 10.1109/CLOUD.2009.80

206

2009 IEEE International Conference on Cloud Computing

978-0-7695-3840-2/09 $26.00 © 2009 IEEE
DOI 10.1109/CLOUD.2009.80

214

2009 IEEE International Conference on Cloud Computing

978-0-7695-3840-2/09 $26.00 © 2009 IEEE
DOI 10.1109/CLOUD.2009.80

221

Afterwards, the document is classified either by supervised

document classification where correct classification infor-

mation is available as part of the training data, or unsuper-

vised document classification where the classification must

be done entirely without reference to external information.

The former is applicable in our case, as the failure codes

are predefined in the problem management process. Vari-

ous machine learning and pattern recognition methods have

been studied in supervised document classification, such as

naı̈ve Bayes [4], TD-IDF [5], support vector machines [6],

kNN [7, 8], decision trees [9, 10], and neural networks [11].

Either or both of the above two steps (featurization and

classification) can be conducted automatically or manually,

and there have been a small number of studies compar-

ing expert-generated rules to supervised learning. Depend-

ing upon the domain, choice of representation, definition

of success, quality of data, time constraints, costs imposed

in knowledge acquisition, and costs imposed in cleaning

and labeling data, “automated” supervised learning can out-

perform “hand-crafted” expert systems [12], or vice-versa

[13]. It is still true that much supervised learning is used

not to outperform expert-generated rules but to substitute

for them, either to open the “knowledge acquisition bottle-

neck” [14] or because the goal is to learn something beyond

current expertise (or there is no expertise) as in data mining

[15].

In this paper we propose a rule-based crowdsourcing

approach with the objective of providing an effective and

scalable method for supporting proactive problem determi-

nation in a global service delivery environment. The pa-

per makes the following three contributions: (1) a simpli-

fied rule-based classification method that lowers the costs

of knowledge acquisition as well as the costs of data clean-

ing and labeling, (2) an xPad crowdsourcing platform for in-

creasing the reachability and consumability of classification

by large practitioner communities, and (3) a detailed exper-

imental comparison between hand-crafted rule set and su-

pervised learning with focus on classification accuracy and

cost effectiveness.

The remainder of this paper is organized as follows. Sec-

tion 2 overviews the problem ticket classification problem

and its challenges in IT service management. In Section 3

we present the proposed rule-based classification approach

and the rule lifecycle management framework. Section 4

discusses the architecture and prototype of the xPad crowd-

sourcing platform. Section 5 shows the experimental eval-

uation results using real data from several large IT delivery

centers. Our conclusions are contained in Section 6.

2 Proactive Problem Management

Figure 1 shows the process and operations of problem

management in a service delivery center. The service clients

Ticketing
Systems

Problem
Classification

Trend
Analysis

Root Cause
Analysis

Remedial
Actions

Problem
Resolution

IT Infrastructure

IT Infrastructure

IT Infrastructure

…
Proactive Problem Management

Reactive Problem Management

Clients

Figure 1. Illustrative process and operations
of problem management.

interact with the service provider through ticketing systems,

which coordinate ticket creation and access. The ticket

records are stored in the database and contain incident de-

tails such as client name, platform, failure descriptions, and

severity code. System administrators fetch the tickets from

the ticketing systems, identify and solve the problems in

response to the incidents, and close the tickets with doc-

umented resolution approaches. Periodically, quality ana-

lysts acquire a batch of tickets from the ticketing systems,

classify the tickets by assigning the failure code to each

ticket, analyzing the volume and trend of each failure class,

identifying the root causes, and taking remedial actions to

prevent or reduce incident recurrence.

Due to the high ticket volume, manually classifying each

ticket is time-consuming and sometimes impractical. The

ticket classification problem is essentially learning (or man-

ually crafting) a function from training data, where the input

is the incident record and the output is the class label of the

incident. After having seen a number of training examples

(i.e., pairs of incident and failure code), the learned func-

tion will automatically classify the tickets and thus improve

the productivity of the quality analysts. It may also improve

the quality of problem classification from the perspective of

consistency.

The problem management process requires the accurate

and comprehensive recording of incidents in order to iden-

tify the cause of the incidents and the trends, and instigate

remedial actions. In practice, however, the problem tick-

ets are typically not well documented regarding both the

incident descriptions and the resolution techniques. This

is especially true in a global delivery environment where

problem tickets are generated from a large number of IT

infrastructures for multiple clients. Moreover, there are in-

sufficient pre-classified tickets, which adversely impact the

quantity and quality of the training data. Since labeling data

is not cheap, sometimes the quality analysts apply the sam-

pling approach by labeling only a small set of tickets, which

reduces the available training examples. On the other hand,

2
207207207215222

poor data quality may suffer from the fact that not all the

labeled tickets are classified correctly, since the expertise of

the quality analysts varies.

There are other challenges arising from the scale of

global deployment. First, different delivery centers gener-

ally have a different mix of tickets and it is difficult to drive

data consistency. As different clients can use different event

monitoring systems, the machine-generated tickets are dis-

similar across delivery centers. This variation in vocabu-

lary can also come from humans. Although even in a single

deployment, the same incident and resolution may always

be described differently and the same type of tickets may

be classified differently due to the user’s own interpretation

of the failure code, this difference is magnified in global

deployment. Second, the ticket composition evolves over

time, when the new clients are onboarded, new delivery cen-

ters are created, or a new failure code taxonomy is adopted

to fit with a change in business requirements. All these dif-

ferences and changes result in scarcity of valid training data,

and require an effective means to build an adaptive classifi-

cation mechanism.

In fact, some of the above challenges also indicate pos-

sible approaches to the solutions. For example, the use of

machine-generated tickets means that a set of phrases asso-

ciated with specific classes of tickets could be developed a
priori to be used as features, requiring much less data than

would be necessary to derive useful phrases by statistical

methods. Furthermore, in this domain of problem ticket

classification, there is an existing source of expertise held

by the quality analysts. While it is more difficult to extract

their knowledge (e.g., in the form of rules), it is also in their

best interest because they can free up their time on ticket

classification (especially for recurrent incidents with large

volume) and focus on more intellectually challenging tasks.

While eliciting ticket classification knowledge sounds

similar to creating an expert system, it is different in that

expert systems typically involve three roles: domain ex-

perts to provide the knowledge, knowledge experts to cre-

ate the rules, and non-experts as the expert system users.

In contrast, considering the challenges and opportunities in

problem ticket classification, we propose a scalable crowd-

sourcing approach, where all three roles are performed by

the same community of the quality analysts. The rules will

be designed by the quality analysts and used by the quality

analysts.

This subtle change in the goal of knowledge acquisition

and deployment has the potential of increasing the quality

of the knowledge (since it is their own interest for getting

better rules). However, it also adds the challenges on devel-

oping a simple rule-base design and management approach

suitable for the mass, and leveraging the mass collaboration

enabled by Web 2.0 technologies.

3 Rule-based Classification

In this section we present a design for rule-based classifi-

cation. The classifier uses simple IF-THEN rules to classify

the tickets, and the rules are managed and updated based

on rule quality statistics. This design is crowdsourcing-

oriented, making the rules simple and scalable, so that the

quality analyst community can develop and use the rules

easily, effectively, and cooperatively.

3.1 Classification Rules

A rule-based classifier is composed of a set of rules.

Each rule is composed of a IF clause and a THEN clause.

The syntax for the IF clause may be as simple as pure con-

junctions of binary features (such as rules derived from de-

cision trees and constructed by ID3[16]), or as complicated

as arbitrary boolean expressions or probability statements.

Similarly, the method for combining rules to reach a classi-

fication may be as simple as “the THEN clause is the clas-

sification, and the rules must be disjoint so that there is no

conflict among them”, or arbitrarily complex.

In this paper we take a compromise approach to permit

sufficient expressive power while keeping the rules easy for

the users to write and understand, noting that the users are

experts in solving IT incidents and problems, but are rarely

trained in knowledge engineering. In our solution, the IF

clause includes patterns combined through logical ANDs or

ORs to a maximum of two levels. Each pattern specifies ei-

ther a word or a phrase, and a pattern matches a ticket if it

shares that word or phrase with the ticket, with case sensi-

tivity as a selectable option. The use of phrases as patterns is

of particular value when creating rules to handle machine-

generated text, such as error messages. The flexibility in

handling of case is important for human-input incident de-

scription and solution.

The rule matches the ticket if the boolean expression of

the IF clause evaluates to true where matching patterns are

“true” and non-matching patterns are “false.” The THEN

clause then names a ticket failure code, or class. To simplify

the rule base, we only consider the following two types of

rules.

• Inclusive rules: The inclusive rules take the following

format

IF (P11||P12|| . . . ||P1,n1) && (P21||P22|| . . . ||P2,n2)

&& (P31||P32|| . . . ||P3,n3) THEN FCk

where Pi,j indicates the j-th pattern in the i-th OR

group, FCk indicates the k-th failure code, || denotes

the logical OR operation, and && denotes the logical

AND operation. Each inclusive rule also has a confi-

dence score for arbitrating rule conflictions (which will

be described in detail below). Note that we only use

3
208208208216223

Labeled
tickets

Unlabeled
tickets

Classify
tickets

Review &
correct
labels

Score
rules

Create &
edit rules

Figure 2. Interactive learning process for
classification rules.

two layers of AND and OR, which in our experience

has been sufficient.

• Exclusive rules: The exclusive rules take the following

format

IF (P11||P12|| . . . ||P1,n) THEN NOT FCk

Note that the exclusive rules take a simpler format. The

rules are valuablefor overruling inclusive rules by stat-

ing that certain patterns preclude certain classes. In

practice, the use of exclusive rules makes up for the

limited syntax of the inclusive rules.

These rule formats are chosen for ease in writing rules

rather than any advantage in classification. For example,

there is no featurization (pre-processing) pass: the patterns

in the IF clause correspond directly to the words or phrases

of tickets, but without any attempt to handle word stemming

or synonyms. It was felt that the advantages of featurization

in permitting the creation of a smaller number of more ver-

satile rules while still covering the same examples did not

make up for the added complexity in learning to author the

rules.

Evaluation of a ticket proceeds in two passes. First, all

exclusive rules are applied and the resulting failure code cat-

egories are excluded. Then, all inclusive rules for classes

not already excluded are applied. The classification of the

THEN clause of the inclusive rule with the highest confi-

dence is then associated with the ticket. In the case of ties

among inclusive rules with different THEN clauses, or if no

rule matches, the ticket is left unclassified.

3.2 Rule Lifecycle Management

In problem ticket classification, the process of labeling

data is not cheap, so we wish to generate our rule set using

the smallest number of labeled tickets possible while still

maintaining sufficient classification coverage and accuracy.

We achieve this goal using an interactive learning process,

similar to that discussed in [17]. This process, as shown in

Figure 2, consists of four steps. (1) A batch of unlabeled

tickets is classified by any existing rules (initially, there are

none). (2) The resulting mixture of labeled and unlabeled

tickets are reviewed by the user, and the labels are corrected

if necessary. (3) The existing rules are scored against the

labeled tickets. (4) The user reviews the rules by correct-

ing inaccurate rules and adding new rules where coverage

is poor. The above four steps iterate until the user is satis-

fied with the coverage and accuracy of the resulting rule set.

Note that in the interest of time and productivity, the user

is unnecessary to review all labels and make corrections in

Step 2. Typically, examining a few labels in each interac-

tive cycle is sufficient to identify the problematic rules or

the opportunities for new rules.

We define the following two rule statistics to quantify

the quality of the individual rules as well as the rule set.

Deriving these statistics depends on the existence of pre-

classified tickets.

• Coverage: The coverage metric defines the percentage

of tickets that can be matched by the rules. We calcu-

late coverage as

coverage = (TP + FP)/T (1)

where TP (true positive) is the number of tickets in the

set that the rule correctly classifies, FP (false positive)

is the number of tickets in the set that the rule matches

but incorrectly classifies, and T (total) is the number

of tickets in the set. Note that the coverage rate is typi-

cally a metric used for the whole rule set. However, we

can also use this metric to quantify the performance of

an individual rule or a subset of the rules dedicated for

one failure code. It this case, it generally makes more

sense to define T as the number of tickets belonging to

the failure code, so that the coverage is defined relative

to the size of this failure code class.

• Accuracy: The accuracy metric defines the percentage

of tickets that are correctly matched by the rules. We

calculate accuracy as

accuracy = TP/(TP + FP) (2)

Note that we define accuracy relative to the rule

matches, instead of the total number of tickets in the

data set. In this way, we can use accuracy as the mea-

sure of rule confidence, for example, if the number of

false positive is zero, we are 100% confident of this

rule.

The coverage and accuracy defined above are only for

inclusive rules only, but in the presence of exclusive rules.

This is because the existence of exclusive rules is to restrict

4
209209209217224

Table 1. An illustrative rule-based classifier
with rule quality statistics.

78%48%10603797Rule 3

76%78%10223254CPU / MemCAP07

58%124%50277097Rule 2

98%47%1524597Rule 1

97

500

Total

95

335

TP

2

165

FN

65%152%52File system
full

CAP01

72%93%128FC-
TOP10

AccuracyCoverageFP

the scope of the inclusive rules, without introducing the log-

ical NOT (in the interest of keeping the rules simple for the

users). Thus, the exclusive rules are used to lower the cov-

erage and increase the accuracy of the rules. Generally, the

users are striking a balance between coverage and accuracy,

with more preference on accuracy.

For better rule management we organize the rules ac-

cording to the failure code (class). This helps the user to

focus on a subset of rules, evaluate their performance, and

make rule update and edit. Table 1 illustrates a rule-based

classifier called FC-TOP10, where TP indicates the rule

matches a ticket and generates the correct classification, FN

indicates the rule fails to match a ticket, and FP indicates the

rule matches a ticket and generates an incorrect classifica-

tion. The rules are organized per failure code (e.g., there are

three rules for failure code CAP01 - File system full). The

rule statistics are also provided at the classifier level, the

rule group level (per failure code), and the rule level. Note

that the coverage rate at the latter two levels is defined rel-

ative to the number of tickets belonging to the failure code.

Although it may appear strange to see a coverage rate larger

than 100%, it helps understand and update the individual

rules.

4 xPad Crowdsourcing Platform

In this section we describe our implementation of the

solution presented in Section 3, an xPad crowdsourcing

platform that supports rule-based classification by leverag-

ing the mass collaboration enabled by Web 2.0 technolo-

gies. Our approach combines rule-based classification with

crowdsourcing to leverage the network of user communities

and domain expertise and provide an easy means to update

and validate the rule base.

xPad is implemented on a LAMP (Linux, Apache,

MySQL, and PHP) stack with heavy use of AJAX (Asyn-

chronous JavaScript and XML) to give users an interactive

Figure 3. High-level overview and information
flow of xPad

experience. xPad is designed to enable a large user commu-

nity to both author (or create) and consume (or run) rules

against community uploaded data sets. There are two types

of users that are of interest: rule authors and rule consumers,

with consumers executing the authored rules against up-

loaded data sets. Both type of users are expected to use

xPad as a collaborative environment for improving rule ef-

ficiency and sharing classified data sets.

Figure 3 shows a high-level overview of xPad, highlight-

ing how information flows through the system. Looking at

the life-cycle of classifying a data set, there are five dis-

tinct stages: (1a) script or rule authoring, (1b) data upload,

(2a) automatic classification, (2b) manual override, and (3)

data export. Here, Xa and Xb denotes two stages that can

happen in parallel by different users. Stages 1a and 1b are

performed in the Rule Editor and Upload and Tag in Fig-

ure 3, respectively. As we will describe shortly, users can

also upload executable classification scripts directly. Stages

2a, 2b, and 3 are performed in the Online Spreadsheet. Fi-

nally, in all stages, xPad supports blog-like collaboration on

user activities.

That said, there are three primary components in xPad:

(1) an online spreadsheet editor, (2) a script sand-box, and

(3) a collaboration engine. The first is best described as

a simple interactive online spreadsheet. Users can upload

their data (shown in Upload and Tag in Figure 3). Once

uploaded, they are able to manually modify or apply user-

uploaded scripts or rules.

5
210210210218225

The second component is the script execution sand-box.

xPad allows users either to create classification rules using

the Rule Editor or to upload executable scripts authored us-

ing a variety of scripting languages, including Perl, PHP,

and shell script. Internally, xPad translates all rules to Perl

scripts. The structure of each script is fairly simple: it

must read CSV data from standard input and writes to stan-

dard output. Each line in the output is a three-tuple: (af-

fected row,classification code,confidence). Also, only af-

fected rows are expected to be piped to output.

Because xPad allows users to upload arbitrary executable

scripts, these scripts need to run in an isolated environment

to protect the security and integrity of the system (even if

users are not expected to author malicious code). That said,

before any script is executed, xPad creates an ephemeral

sand-box, copies the necessary data and executable files,

and runs the scripts against the data. The output is then

piped back to the user visualization logic, which in turn up-

dates the displayed table on the user’s browser.

To minimize the effect of user errors, xPad automatically

versions all data manipulation, particularly before script ex-

ecution. Here, we wanted to give users the ability to role

back any unintended changes. Additionally, it allows easy

comparisons between the efficacy of different scripts. Go-

ing forward, we see the use of sand-boxing diminishing as

users will rely more on the rule editor, which internally en-

sures that the rules are translated to safe scripts.

The last component of xPad is an integrated collabo-

ration engine. Here, xPad allows users to add discussion

threads against all user-created contents, including scripts,

data sets, etc. Each thread is tagged and can be filtered

across various dimensions.

5 Experimental Evaluation

In this section we illustrate how the rule-based crowd-

sourcing classification approach can be used for problem

ticket classification, and also compare it with the supervised

learning approach.

Our evaluation is based on problem ticket classification

data collected from several large service delivery centers.

The data are collected over a period of one year, includ-

ing more than 20,000 problem tickets. However, the data

are not uniformly distributed across delivery centers; some

newer centers only have several months of data.

5.1 Evaluation Results

Table 2 shows the classification results based on the data

from one delivery center. Only the largest 10 classes are

shown in the table. We use one week of data (500 tickets) as

the training data to create the rules, and another four weeks

of data (2158 tickets) for testing. We use TP to denote true

Table 2. Rule-based classification results.
(TP: true positives, FN: false negatives, FP:
false positives.)

Failure Code Training Testing

Total TP FN FP Total TP FN FP

File system 97 94 3 7 317 287 30 42
close to full

CPU/memory 99 96 3 2 340 302 38 56
close to full

Unaccessible 30 25 5 13 113 74 39 51
/not pinging

Disk space 7 4 3 3 20 10 10 8

Service / 5 5 0 8 66 34 32 21
daemon down

OS issues 49 48 1 0 63 48 15 1

Password reset 7 5 2 0 53 47 6 5
/ unlock

ID creation 24 13 11 3 111 72 39 22

ID deletion 17 16 1 5 112 104 8 20

Reboot request 10 8 2 3 54 38 16 12

Total 345 314 31 44 1249 1016 223 238

Coverage 72% 58%

Accuracy 88% 81%

positives (the number of tickets correctly classified by rules

for their classes), FN to denote false negatives (the number

of tickets not classified by rules for their classes), and FP

to denote false positives (the number of tickets incorrectly

classified by rules for other classes).

Note that the above counts are calculated on a per class

basis. Since one ticket may result in rule matches from

several different classes, the overall coverage and accuracy

metrics calculated based on the sum of the above counts

(e.g., the accuracy of the training set is calculated as 314 /

358 = 88%) may be different from the actual metrics. How-

ever, we found the difference is not significant, and thus use

these aggregated metrics as an approximation of the overall

classifier performance.

5.2 Comparison with Supervised Learn-
ing

We compare the rule-based classification with several

learning algorithms such as binary decision tree and naı̈ve

Bayes. In the interest of space, in this paper we only show

the results from naı̈ve Bayes, which had better accuracy

compared to the other learning approaches we tested on this

data set.

Generally, supervised learning techniques perform well

in terms of accuracy, if enough labeled data are available.

We have found, however, that this assumption is not fully

satisfied when the cost of labeling data is prohibitively

large. For example, Table 3 is a comparison based on a

smaller training set (500 tickets), both the rule-based classi-

fier and the naı̈ve Bayes approach have about 80% of accu-

6
211211211219226

Table 3. Comparing rule-based classification
with naı̈ve Bayes - smaller data set. (TP: true
positives, FN: false negatives, FP: false posi-
tives.)

racy in training, but the accuracy of naı̈ve Bayes deteriorates

to 56% in testing while the rule-based classifier sustains at

77%.

On the other hand, when a large amount of pre-classified

data are available, the supervised learning may also have

challenges in featurization and capturing the right phrases,

especially for machine-generated tickets. This is the case as

shown in Table 4. Although the classification performance

is consistent between training and testing for both the rule-

based classifier and naı̈ve Bayes, the naı̈ve Bayes approach

tends to have a higher number of false positives.

5.3 Cost Analysis

While the rule-based classifier has shown promising ac-

curacy results, it it also important to understand the com-

plexity and cost of creating and managing the rules. We use

the number of patterns (either words or phrases) rather than

the number of rules to quantify the classifier complexity,

and consider the time spent on getting these patterns as the

cost.

In our exercise, the first set of rules built for the largest

10 failure code classes, as shown in Table 2, has about 100

patterns (i.e., 10 patterns per failure code). Building this

rule set took about 5 hours, that is, 0.5 hour per failure code

class. Although spending more time can help to increase

the rule coverage and accuracy, at certain point, it will be

more productive to manually classifying the tickets instead

of finding the obscure and not repeatable patterns.

As we progress, the rule set grows from covering 10 fail-

Table 4. Comparing rule-based classification
with naı̈ve Bayes - larger data set. (TP: true
positives, FN: false negatives, FP: false posi-
tives.)

ure codes to 29 failure codes and work has also been con-

ducted to update the rules for the first 10 failure codes in

response to ticket mix changes. The new rule set has 500

patterns (i.e., 17 patterns per failure code). This increases

the coverage from 60% to 70%, and still keep the accuracy

around 80%. The time spent is 1.5 hour per failure code on

average. Overall, we believe the cost of creating the rule

set is manageable, compared to the cost of labeling the tick-

ets. It also has the value of sharing the knowledge and rules

across the delivery centers to realize collaborative savings.

6 Conclusions and Future Work

Problem management is a critical and expensive element

for delivering IT service management and touches various

levels of managed IT infrastructure. While problem man-

agement has been mostly reactive, recent work is studying

how to leverage large problem ticket information from sim-

ilar IT infrastructures to probatively predict the on sit of

problems.

Because of the shear size and complexity of prob-

lem tickets, supervised learning algorithms have been the

method of choice for problem ticket classification, relying

on labeled (or pre-classified) tickets from one managed in-

frastructure to automatically create signatures for similar

infrastructures. However, where there are insufficient pre-

classified data, leveraging human expertise to develop clas-

sification rules can be more efficient. In this paper, we

describe a rule-based crowdsourcing approach, where ex-

perts can author classification rules and a social networking-

7
212212212220227

based platform (called xPad) is used to socialize and exe-

cute these rules by large practitioner communities. We also

provide a detailed study of the efficacy of rule-based clas-

sification, across two dimensions: accuracy and cost. We

show that well constructed (simple) rules can perform bet-

ter than supervised learning, and is cost effective as well.

There are several directions for future work. The most

interesting one is to study how to refine the rule editing pro-

cess by incorporating machine learning. The method pre-

sented in this paper does not explore methods combining

machine learning with knowledge acquisition. However,

there is a substantial body of work in this combination as ap-

plied to various domains ([14], [17], [18], among many oth-

ers). Finding the “sweet spot” minimizing effort by experts

on both of the sources of expert knowledge while maintain-

ing a given level of accuracy requires some effort and is

domain-specific; however, the domain of problem tickets is

large enough and has great enough business value that it

worth the effort.

In addition, it is also interesting to develop a method-

ology to streamline the process of identifying patterns in a

consistent and efficient way in response to new client on-

boarding or failure code changes. Furthermore, it is worthy

to study whether exploring the hierarchical structure of the

failure code can help to improve the accuracy of problem

ticket classification.

Acknowledgement

The authors would like to thank Jason Gast for many use-

ful comments and suggestions on understanding the prob-

lem management process and acquiring the knowledge for

ticket classification.

References

[1] “IT Infrastructure Library. ITIL Service Support, ver-

sion 2.3.” Office of Government Commerce, June

2000.

[2] A. Bose, A. R. Heching, and S. Sahu, “A frame-

work for model based continuous improvement of

global it service delivery operations,” in Proceedings
of IEEE International Conference on Services Com-
puting, Honolulu, HI, pp. 197–204, 2008.

[3] B. Yu, “An evaluation of text classification methods

for literary study,” Literary and Linguistic Computing,

vol. 23, pp. 327–343, 2008.

[4] S.-B. Kim, K.-S. Han, H.-C. Rim, and S. H. Myaeng,

“Some effective techniques for naive bayes text classi-

fication,” IEEE Transactions on Knowledge and Data
Engineering, vol. 18, pp. 1457–1466, 2006.

[5] G. Salton and C. Buckley, “Term-weighting ap-

proaches in automatic text retrieval,” Information Pro-
cessing and Management, vol. 24, pp. 513–523, 1988.

[6] T. Joachims, Learning to Classify Text using Sup-
port Vector Machines. Kluwer Academic Publishers

/ Springer, 2002.

[7] R. Duda and P. Hart, Pattern Classification and Scene
Analysis. John Wiley & Sons, 1973.

[8] W. Cohen and H. Hirsh, “Joins that generalize: Text

classification using WHIRL,” 1998.

[9] C. Apté, F. Damerau, and S. Weiss, “Automated

learning of decision rules for text categorization,”

ACM Transactions on Information Systems, vol. 12,

pp. 233–251, 1994.

[10] J. R. Quinlan, C4.5: Programs for Machine Learning.

Morgan Kaufmann Publishers, 1993.

[11] M. E. Ruiz and P. Srinivasan, “Hierarchical text cat-

egorization using neural networks,” Inf. Retr., vol. 5,

pp. 87–118, January 2002.

[12] R. Michalski and R. Chilausky, “Knowledge acqui-

sition by encoding expert rules versus computer in-

duction from examples: a case study involving soy-

bean pathology,” International Journal of Human-
Computer Studies, vol. 51, pp. 239–263, 1999.

[13] A. Ben-David and E. Frank, “Accuracy of machine

learning models versus ”hand crafted” expert systems

- a credit scoring case study,” Expert Syst. Appl.,
vol. 36, no. 3, pp. 5264–5271, 2009.

[14] T. Mitchell, S. Mahadevan, and L. Steinberg, “LEAP:

A learning apprentice for VLSI design,” 1985.

[15] I. Witten and E. Frank, Data Mining: Practical Ma-
chine Learning Tools and Techniques. Morgan Kauf-

mann, second ed., 2005.

[16] J. R. Quinlan, “Induction of decision trees,” Machine
Learning, vol. 1, pp. 81–106, 1986.

[17] D. Loewenstern, S. Ma, and A. Salahshour, “PIC-

CIL: Interactive learning to support log file categoriza-

tion,” in ICAC ’05: Proceedings of the Second Inter-
national Conference on Automatic Computing, (Wash-

ington, DC, USA), pp. 311–312, IEEE Computer So-

ciety, 2005.

[18] G. Towell, J. Shavlik, and M. Noordewier, “Refine-

ment of approximate domain theories by knowledge-

based neural networks,” 1990.

8
213213213221228

