2008 Eighth IEEE International Conference on Data Mining

Measuring Proximity on Graphs with Side Information

Hanghang Tong
Carnegie Mellon University
htong@cs.cmu.edu

Abstract

This paper studies how to incorporate side informa-
tion (such as users’ feedback) in measuring node prox-
imity on large graphs. Our method (ProSIN) is moti-
vated by the well-studied random walk with restart (RWR).
The basic idea behind ProSIN is to leverage side infor-
mation to refine the graph structure so that the random
walk is biased towards/away from some specific zones on
the graph. Our case studies demonstrate that ProSIN is
well-suited in a variety of applications, including neighbor-
hood search, center-piece subgraphs, and image caption.
Given the potential computational complexity of ProSIN,
we also propose a fast algorithm (Fast-ProSIN) that ex-
ploits the smoothness of the graph structures with/without
side information. Our experimental evaluation shows that
Fast-ProSIN achieves significant speedups (up to 49x) over
straightforward implementations.

1 Introduction

Measuring proximity (i.e., relevance/closeness) between
nodes on large graphs is a very important aspect in graph
mining and has many real applications in ranking, anomaly
nodes indentification, connection subgraphs, pattern match-
ing, etc. Despite the successes of many previous work,
most existing proximity measurements only consider the
link structure of the underlying graph, ignoring any possible
side information. For example, given an author-conference
bipartite graph, existing proximity measurements may an-
swer the question: What are the most similar conferences
to KDD? However, for a particular user, s/he might have
her/his own preferences: [dislike ICML or I like SIGIR.
These preferences are typically localized to a particular
search, and may not reflect a global sentiment by the user.

There are a wide range of scenarios where users’ feed-
back, both implicit or explicit, can be naturally integrated as
side information. For instance, in recommendation systems,
side information could be users’ ratings on items (e.g., / like
Kung-Fu Panda). In Blog analysis, it could be opinions and
sentiments. Additionally, for many real applications, users’
preferences can be estimated from click-through data. That
said, it is thus important to incorporate such side informa-
tion in the proximity measurement so that search results are

1550-4786/08 $25.00 © 2008 IEEE
DOI 10.1109/ICDM.2008.42

Huiming Qu
IBM T.J. Watson
hqu@us.ibm.com

Hani Jamjoom
IBM T.J. Watson
jamjoom @us.ibm.com

well-tailored to reflect a user’s individual preferences. In
the earlier example, the question will then become: What
are the most similar conferences to KDD, but dissimilar to
ICML?

In this paper, we address the above challenge by propos-
ing a novel method, called ProSIN, that incorporates such
like/dislike side information in measuring node proximity
on large graphs. Our method is based on random walk with
restart (RWR), where ProSIN uses the side information to
refine the graph structure so that RWR is biased to avoid
or to favor some specific zones on the graph according to
the users’ preferences. Additionally, ProSIN inherits exist-
ing capabilities from RWR, such as the ability to summarize
the multiple faceted relationships, to be interpreted from the
perspective of steady-state probability, etc. Therefore, we
expect ProSIN to enrich a broad-range of applications by
replacing their original proximity measurement implemen-
tation. We evaluate ProSIN in three case studies: neighbor-
hood search, center-piece subgraph, and image caption. In
all cases, we show that ProSIN naturally reflects the users’
preference and/or improves the quality of the existing ap-
plications (e.g., boost the precision/recall of the image cap-
tions by more than 10%).

Because a straightforward implementation of ProSIN re-
quires significant computation, we propose a fast algorithm
(Fast-ProSIN) that computes the proposed proximity mea-
surement, while radically reducing the computational over-
head. Fast-ProSIN achieves the performance gains by ex-
ploiting the smoothness of the graph structures with/without
side information. Our experimental results show that it
achieves significant speedup (up fo 49x) while maintaining
high approximation accuracy (more than 93.0%).

The paper has three key contributions:

e A novel method (ProSIN) to incorporate side infor-
mation (like/dislike) in measuring node proximity on
large graphs, enriching a broad range of applications;

e A fast algorithm (Fast-ProSIN) to compute the pro-
posed proximity measurement, achieving significant
speedups (up to 49x);

e Extensive experimental evaluations on several real
datasets.

IEEE
computer
psoaety

Table 1. Symbols

| Symbol | Definition and Description
A B,. matrices (bold upper case)
A(i,5) element at the i*® row and j*® column of A
A(i,:) i*" row of matrix A
A(:,9) 4 column of matrix A
a,b,... column vectors
7,J,.. sets (calligraphic)
n number of nodes in the graph
n' number of out links of node i
¢ (1 — ¢) is the restart probability
T proximity from node 7 to node j
r; = [r; ;] | ranking vector fornodei (j =1,...,n)
P positive set P = {1, ..., T+ }
N negative set N = {y1, ..., Yn- |
nt number of positive nodes n™ = |P)|
n- number of negative nodes n~ = ||
e; n x 1 starting vector for node ¢,
where e;(i) = 1 and e;(j) = 0(j #7)

The rest of the paper is organized as follows. We in-
troduce notations and formally define the problem in Sec-
tion 2. We present the proposed proximity measurement in
Section 3 and the fast algorithm in Section 4, respectively.
We provide experimental evaluations in Section 5 and re-
view the related work in Section 6. Finally, we conclude in
Section 7.

2 Problem Definitions

Table 1 lists the main symbols that we use throughout
the paper. We represent a general graph by its adjacency
matrix. Following the standard notation, we use capital let-
ters for matrices (e.g. A), lower case for vectors (e.g. a),
and calligraphic fonts for sets (e.g. 7). We use the symbol
“7” to distinguish the setting with/without side information.
For example, A is the normalized adjacency matrix of the
graph without side information; and A is the normalized
adjacency matrix of the refined graph by side information.

We represent the elements in a matrix using a conven-
tion similar to Matlab, e.g., A (7,) is the element at the i'"
row and j** column of the matrix A, and A(:, j) is the j*
column of A, etc.

We use a running example, depicted in Fig.1(a), to de-
scribe the problem statement. There, each node represents
a person (e.g., node 1 is ‘John’, node 2 is ‘Smith’, etc.)
and the existence of edge represents some social contact be-
tween the two corresponding persons (e.g., phone call). In
traditional settings of proximity measurement, the goal is to
quantify the closeness (i.e., relevance) between two nodes
(the source and target) based on the link structure of the un-
derlying graph. In our settings, we assume the existence
of side information, focusing primarily on like/dislike user
feedback as side information. In our running example, a

599

user might not want to see (i.e., dislike) node 6 but favors
(i.e., like) node 4.

Formally, we represent such side information by two sets
P and N. The set P contains the node indices that users
like (referred to as the positive set), where the correspond-
ing nodes are referred as positive nodes. The set A contains
the node indices that users dislike (referred as negative set),
where the corresponding nodes are referred to as negative
nodes. In our running example, both the positive set P and
the negative set A/ contain one single element, respectively:
P = {4} and N' = {6}. Our goal is to incorporate such
side information to measure the node proximity (e.g., the
proximity from node 1 to the node 3 in our running exam-

ple).

(a) the graph (node 1 is the source.)

0033 0 0033 0 0 0025 0 0 0 N
033 00505 6o 0 0 0O 0 0 0 0

0033 005 60 0 0 0 0 0 0 0

003305 0 6o o0 0 0 0 0 0 0 0
033 0 0 0 005 005 0O 0 0 0 O

o o0 0 0033 005 0 0 0 0 0 O

0 0 0 0 005 005 O O 0 O O

0 0o 0 0033 005 0 O 0 0 0O 0
033 0 0 0 00 0 0 0 0505 0033

0 0 0 0 0 0 0 0 025 0 0 0033

0 0 0 0 00 0 0025 0 005 0

0 0 0 0 0 0 0 0 0 005 0033
Q 0 0 0 00 0 0025 05 005 _y

(b) column normalized adjacency matrix A
Figure 1. The running example.
With the above notations and assumptions in mind, our
problem can be formally defined as follows:

Problem 1 (Proximity with Side Information)

Given: a weighted direct graph A, a source node s and a
target node t, and side information P and N;

Find: the proximity score 7 ; from source node s to target
node t.

In problem 1, if the target node ¢ is absent, we measure
the proximity score 7 ; (¢ = 1,...,n) from the source node
s to all the other nodes in the graph. If we stack all these
scores into a column vector Ty = [;](= 1,...,n), it is
equivalent to saying that we want to compute the ranking
vector Iy for the source node s. In this paper, we assume
that there is no overlap between the positive set and negative

set (iLe., PNN = ¢.‘) Also, the positive and negative
side information do not need to exist simultaneously. For
example, if we only have positive side information, we can
simply set the negative set to be empty (i.e., N' = ¢).

3 ProSIN

In this section, we introduce our proximity measurement
with side information, ProSIN. We begin by reviewing ran-
dom walk with restart (RWR), which is a good proximity
measurement for the case where there is no side informa-
tion. We, then, extend RWR to properly account for side
information.

3.1 RWR: Proximity without Side Information

Random walk with restart (RWR) is considered one of
the most successful methods for measuring proximity and
is receiving increased interest in recent years—see Section
6 for a detailed review. For a given graph, RWR is defined
as follows. Consider a random particle that starts from node
1. The particle iteratively transits to its neighbors with prob-
abilities proportional to the corresponding edge weights. At
each step, the particle can returns to node ¢ with some restart
probability (1—c). The proximity score from node ¢ to node
j is defined as the steady-state probability r; ; that the par-
ticle will be on node j [18]. Intuitively, r; ; is the fraction
of time that the particle starting from node ¢ will spend on
each node j of the graph, after an infinite number of steps.

If we stack all the proximity scores r; ; into a column r;
(referred to as the ranking vector for the node %), the equa-
tion (1) gives the formal definition of RWR:

r; = cAr; + (1 — ¢)e;, (1)
where A is the column normalized adjacency matrix for the
graph and e; is the starting vector for node .

For our running example in Fig. 1(a), its normalized ad-
jacency matrix A is shown in Fig. 1(b). If we ignore any
side information, by setting the correct starting vector (e.g.,
e; = [1,0,0,0,0,0,0,0,0,0,0,0,0] for node 1), we can
solve the corresponding ranking vector using equation (1).
Fig. 2(a) plots the ranking vector (sorted from highest to
lowest) for node 1 of the running example. The scores are
consistent with our intuition: nearby nodes (e.g., nodes 9, 2
and 5) receive higher proximity scores.

3.2 ProSIN: Proximity with Side Information

Basic Ideas. Our goal is to incorporate side informa-
tion to measure the node proximity. Intuitively, for a given
source node s, if positive nodes exist, the proximity score
from the source node to such positive nodes as well as their
neighboring nodes should increase, compared to the case
where such side information is unavailable. In our running

11f this does not hold, we can remove the intersection from both positive
set and negative set.

600

example, if we know node 4 belongs to the positive set P,
we expect that the proximity score from the source node
1 to node 4 to increase and so will the proximity scores
from node 1 to node 4’s neighboring nodes (e.g., node 2
and node 3). Analogously, if negative nodes exist, the prox-
imity scores from the source node to such negative nodes as
well as their neighboring nodes should decrease, compared
to the case where such side information is unavailable. In
our running example, if we know that node 6 belongs to the
negative set A/, we expect the proximity score from node
1 to node 6 to decrease, and so will node 6’s neighboring
nodes (such as nodes 5 and 7).

The basic idea of ProSIN is then to use side information
to refine the original graph structure so that the random par-
ticle (1) has higher chances of visiting the positive nodes as
well as their neighboring nodes, and (2) has lower chances
of visiting the negative nodes as well as their neighboring
nodes.

(a) the updated graph

m.% 0 0001 0 0 0025 0 0 0 N
0.25 00505 0 0 0 0 0 0 0 0 0

0033 005 0 0 0 0 0 0 0 0 0
0.25 033 05 0 0 0 0 0 0 0 0 0 0
0.25 0 0 0 0 0 005 0 0 0 0 0

0 0 0 0001 001 O 0 0 0 0 0

0 0 0 0 0 0 005 0 0 0 0 0

0 0 0 0001 001 O 0 0 0 0 0
0.25 0 0 0 0 0 0 0 0 0505 0033

0 0 0 0 0 0 0 0 025 0 0 0033

0 0 0 0 0 0 0 0025 0 005 0

0 0 0 0 0 0 0 0 0 005 0033
Q 0 0 0 0 0 0 0025 05 005 _y

(b) updated column normalized adjacency matrix

Figure 3. Adjustment on the original graph in
the running example in Fig. 1.

Dealing with Positive Nodes. For each node z in the
positive set (P), we create a direct link from the source node
stonode x. As in the running example, we add a direct link
from the source node 1 to node 4 (See Fig. 3(a)). In this way,
whenever the random particle visits (or restarts from) the
source s, it has higher chances of visiting the nodes in the
positive set. Note that we are also implicitly increasing the

Proximity Score
°

(a) without side information

normalized so that they sum up to 1.)

chance that the random particle will visit the neighborhood
of those positive nodes. The weight of each newly added
link is set to 1/(n® + nt). For example, the newly added
edge (1,4) for the running example will receive a weight of
0.25 (since n! =3 and nt =1).

Dealing with Negative Nodes. To deal with the nega-
tive nodes, we introduce a sink into the graph, which has
no out links. For each node y in the negative set (N), we
put a direct link from node ¥ to the sink. Thus, whenever
the random particle visits this node, it can go to the sink
and never comes back (since there is no out links from the
sink). Therefore, this negative node y is penalized and its
corresponding proximity score will decrease. In order to
penalize the neighborhood of node y, we also put a direct
link from its neighboring nodes to the sink. In our running
example, besides the link from node 6 (the negative node) to
the sink, we placed a link from nodes 5 and 7 (the neighbor-
ing nodes of node 6) to the sink respectively (see Fig. 3(a)).

There are two remaining questions: (1) how to choose
the neighborhood of a negative node y and (2) how to de-
termine the weights to the sink. Let the index of the sink
node be n + 1, the procedure is summarized in Alg. 1. In
Alg. 1, we use random walk with restart (on the original
graph) to determine (1) the neighborhood of the negative
node y (steps 2-4), and (2) the weights of the newly added
links to the sink (steps 5-6). Notice that we eventually (step
9) discard the last row/column (which corresponds to the
sink node). We use it to simplify the description of the pro-
posed method without affecting the ranking vector in accord
to the property of a sink node.

ProSIN Algorithm. Based on the above preparations,
the complete algorithm to measure proximity with side in-
formation (ProSIN) is given in Alg. 2. In Alg. 2, after ini-
tialization (step 1), we first use side information to refine
the graph structure (steps 2-7 for positive nodes,” and steps
8-12 for negative nodes). Note that in step 10, we use the
same A (i.e., the original graph) to add links for each nega-
tive node y. This is because we assume that all the negative

Note that step 3 is to insure that the s*" column of A sums up to 1.

601

Proximity Score
°

(b) with side information
Figure 2. Ranking vector for node 1 in the running example in Fig. 1. (The proximity scores are

Algorithm 1 Add Links for One Negative Node
Input: The adjacency matrix A, the negative node y, the
neighborhood size k and c.
Output: The updated adjacency matrix A.
1: initialize A = A, A(n+1,:) = 0,and A(:,n+1) = 0.
2: get the ranking vector for the negative node y by r, =
cAr, + (1 —c)e,. Let e := k" largest element in .
for each node i do
ifr,; > e then
set A(n41,0) =r,,/ry,
set A(1:n,4) = (1 —ryi/ry,)A(l:n,i)
end if
end for
output A = A(1:n,1:n).

R A A A

nodes are obtained in a batch mode (i.e., there is no order-
ing among different negative nodes). Then, we perform a
random walk with restart on the refined graph (A) for the
source node s (step 13) and output the corresponding steady
state probability as the proximity score (step 14). For exam-
ple, Fig. 2(b) plots the ranking vector (sorted from highest
to lowest) for node 1 of the running example with side in-
foramtion (P = {4}, and V' = {6}). Compared to the
case without side information (Fig. 2(a)), it can be seen that
positive node (node 4) as well as its neighborhood (nodes 2
and 3) receives higher proximity scores; while the negative
node (node 6) as well as its neighboring nodes (nodes 5 and
7) receives lowers scores.

4 Fast-ProSIN

In this section, we introduce our fast solution for ProSIN.
We start by reviewing NB_LIN, which is a fast algorithm to
compute random walk with restart (the proximity without
side information) [25]. We then extend it to include side
information.

4.1 Background: NB_LIN for RWR

According to the definition (equation (1)), we need to in-
vert an n X n matrix. This operation is prohibitively slow for

Algorithm 2 ProSIN
Input: The adjacency matrix A, the source node s and the
target node ¢, the side information P and A\, the neigh-
borhood size k, and the parameter c.
Output: the proximity score I'; ; from source s to target .
initialize A = A
if nt > 0 then
A(;,s) =n®/(n® +nt)A(, s)
for each positive node = in P do
A(z,s) = A(x,s) +1/(n® +n').
end for
end if
if n= > 0 then
for each negative node y in /' do
update A by Alg. 1
end for
: end if
: solve the equation T's = cAF, + (1 —c)es.
: output ¥y, = Fy(¢).

R AN A S

—_ e

large graphs. On the other hand, the iterative method (iter-
ating equation (1) until convergence) might need many iter-
ations, which is also not efficient. In [25], the authors solve
this problem using a low-rank approximation, followed by a
matrix inversion of size [x [(where [is the rank of the low-
rank approximation) to get all possible proximity scores.
Their solution, called NB_LIN, is the starting point for our
fast algorithm.

Alg. 3 summarizes NB_LIN, where it is divided into
two stages: NB_LIN_Pre() and NB_.LIN.OQ(). In
NB_LIN_Pre() (steps 1-3), a low-rank approximation is
performed for the normalized adjacency matrix A and a
matrix inversion A is computed. Next, in NB_LIN_OQ)()
(steps 4-5), only a small number of matrix-vector multipli-
cations are computed to output the ranking vector.

Algorithm 3 NB_LIN

Input: The normalized adjacency matrix A, the source
node s and c.

Output: The ranking vector for source node rs.

Pre-Compute Stage (NB_LIN_Pre())

do low-rank approximation for A = USV

pre-compute and store the matrix A = (S™1—cVU)~!

On-Line Query Stage (NB_LIN_OQ())

outputry = (1 — ¢)(es + cUAVe,)

EAE N

4.2 Fast-ProSIN

To incorporate side information, we need to solve ran-
dom walk with restart in two places. First, we process the
original graph A (step 10 in Alg. 4); and then we pro-
cess the refined graph A to get the ranking vector for the

602

source node s (step 13 in Alg. 4). If we utilize NB_LIN
in a straightforward way, we have to call it twice (for A
and for A, respectively). Unfortunately, this does not fit the
expect usage model of side information, where it needs to
reflect users’ real-time interests. Imagine a user is query-
ing an author-conference bipartite graph, and s/he wants to
know which conferences are most similar to KDD. After
the system gives the initial search results, s/he might further
give her/his own preference (e.g., dislike ICML) and expect
updated search results that matches her/his interests. This
basically implies that calling NB_LIN_Pre() on the refined
graph Ais part of the on-line cost, which may pose a huge
threat to the system’s performance.

Algorithm 4 Fast-ProSIN
Input: The adjacency matrix A, the source node s, the side
information P and /N, the neighborhood size k, and the
parameter c.
Output: the ranking vector r's for the source s.
Pre-Compute Stage
call [U,A, V] = NB_LIN Pre(A,¢)
On-Line Query (Feedback) Stage
initialize i = 1 and @ = Q(kn~ +1)x2
for each negative node 3 in N do
callr, = NB_.LIN.OQ(c¢, U,A, V, e,).
let € := k" largest element in ry.
for eachnode ¢ s.t. ry ; >= e do
set @ (ip, 1) =iand O(ip,2) =1 —r, /1y,
increase ig by 1
end for
end for
: set @(ig, 1) = s and O(ig,2) = n*/(n® +n™)

R A A o S

—
—_

14:setU=Uand V=V

15: fori=1:kn~ 4+ 1do

16: set X(i,:) = U(O(,1),:)

17: set Y (:,i) =V (;,0(:,1))(0(:,2) — 1)
18 set V(:,0(i,1)) = V(:,0(,1))O(4,2)
19: end for

. compute L = (I — ¢XAY) ™!

21: update A = A + cAYLXA

22: sete; = 0" e, (P)=1/(n®*+n')

23: call #, = NB_LIN.OQ(c, U, A, V, e,)

24: callu = NB_LIN.OQ(¢,U,A, V. ey)
S

output s = £ + cf5(s)/(1 — ¢ — cu(s))u

To deal with such challenge, we propose Fast-ProSIN,
which is given in Alg. 4. Here, we assume that we want
the whole ranking vector for a given source node s since
a single proximity score can be read out from such rank-
ing vector. Also, we consider the most general case, where
both positive nodes and negative nodes are present. In Fast-
ProSIN, it first calls NB_LIN_Pre() on the original adja-
cency matrix A (step 2). Then it calls NB_LIN_OQ() to

determine the influence of the negative nodes (steps 5-12)
and partial influence (i.e., scaling the s*" column of the ad-
jacency matrix by a factor of n®/(n® + n™)) of positive
nodes (step 13), both of which are used to update the low-
rank approximation (U and V) as well as matrix A (steps
14 - 21). This way, it avoids directly calling the function
NB_LIN _Pre() on the refined graph A, where it would need
to do a low-rank approximation and a matrix inversion, both
of which are not efficient as on-line costs. Finally, it calls
NB_LIN_OQ() twice (steps 23-24) and combines them as
the final ranking result (step 25). Note that the second call
on e (step 24) is used to compensate for the remaining in-
fluence of the positive nodes (i.e., adding new links from
the source to the positive nodes).

The correctness of Alg. 4 is guaranteed by theo-
rem |. By theorem 1, Fast-ProSIN will not introduce ad-
ditional approximation errors beyond the first time it calls
NB_LIN_Pre() on the original graph. Therefore, Fast-
ProSIN is expected to obtain ranking results similar to call-
ing NB_LIN _Pre() twice (one for A and the other for A).
On the other hand, Fast-ProSIN avoids the expensive steps
(low-rank approximation on A and a matrix inversion of
size [x 1) in calling NB_LIN_Pre(). This, as we will show,
leads to significant on-line running cost savings.

Theorem 1 Correctness of Fast-ProSIN. /f A = USV
holds, then Alg. 4 gives the correct ranking vector for the
source node s.

Proof: let an n x n matrix A s.t.,

~

A(;,0(j,1))
A1) i¢0O(,1)
First, we will show that ¥, in step 23 gives the correct

ranking vector on the matrix A if A = USV holds.
By the construction of matrix A, we have

A if

A(:,G)gj,l))
A1) i¢O(,1)

Thus, in the matrix form, we have A= fJSV, where the
matrices U and V are as defined in steps 14-19 in Alg. 4.

Define the matrix Q = (1 — ¢)(I — cA)~!. By the prop-
erty of NB_LIN algorithm [25], we have

USVv(,i) if

Q = (1-o@-cA)™!
= (1-¢)(I—-cUSsSV)™?
(1—c)(I+cUAV) 4)

where A = (S~! — ¢VU) . .
Next, we will relate A with the matrix A (step 21 of
Alg. 4).

A(:,0(5,1)0(,1) (j=1:kn" +1)
2

3)

603

By the spectral representation, we have the following
equation:

S'—e¢vU S CZV(:,)U(i,:)
™' — (D V(i) UG,:) +6) (5)

i

where § satisfies

kn~ +1

§ = > V(03,1)U(O()1),)(8(),2) - 1)
j=1

= YX (6)

where the matrices Y and X are defined as steps 16-17 of
Alg. 4.

Plugging equations (5) and (6) into the matrix A and ap-
plying Sherman-Morrison Lemma [19], we have

A = (S'1—eVO)?
= A+ cAYLXA
A (7

where the matrices A and L are defined as steps 20-21 of
Alg. 4.

Plugging equation (7) into equation (4), we can verify
the s in step 23 satisfies:

~

fs = Q) (®)

Next, define the matrix Q = (1 — ¢)(I — cA)~"). We
will try to relate Q with matrix Q.

By the construction of A and A, we have

A=A+e.€)

where vector e is defined as in step 22._In other words,

there is only a rank-1 difference between A and A.
Now, applying Sherman-Morrison Lemma [19] to Q, we

USV(;,0(4,1))0(j,1) (j =1: kn~ + 1) have

(- o)1~ cA))
(1—c)(I—cA —ce,e))™)
Q +bQee/Q

Q + buQ(s,)

where vector u is defined as in step 24 and the scale b satis-
fies

Q

(10)

c
A
1—c—celQet
c
1—c—celu
c

Y

1—c—cu(s)

Table 2. Summary of data sets
| dataset | number of nodes | number of edges |

AC 421,807 1,066,816
ML 4,563 20,469
CoMMG 54,200 354,186

Putting equations (7), (10) and (11) together, we have
that the correct ranking vector for the source node s on ma-
trix A must satisfies:

Q(s) = Q(,s) +buQ(s,s)
= T+ L(S)u
7 1—c—cu(s)
= T (12)

where T'; is defined as in step 25, which completes the proof
of theorem 1. 0

S Experimental Evaluations

In this section we present experimental results. All the
experiments are designed to answer the following ques-
tions:

o Lffectiveness: What data mining observations does the
proposed ProSIN enable?

o Lfficiency: How does the proposed Fast-ProSIN bal-
ance between speed and quality?

5.1 Experimental Setup

Datasets. We use three datasets in our experiments,
which are summarized in Table 2.

The first dataset (AC) is from DBLP? It is an author-
conference bipartite graph, where each row corresponds to
an author and each column corresponds to a conference. An
edge weight is the number of papers that the corresponding
author publishes in the corresponding conference. On the
whole, there are 421,807 nodes (418,236 authors and 3,571
conferences) and 1,066,816 edges in the graph.

The second dataset (ML) uses author-paper information
from two major machine learning conferences (‘NIPS’, and
‘ICML’) to construct a co-authorship graph, where each
node represents an author and an edge weight is the num-
ber of co-authored papers between any two corresponding
authors. On the whole, there are 4,563 nodes and 20,469
edges.

The third dataset (CoMMG) is used in [18], which con-
tains around 7,000 captioned images, each with about 4 cap-
tioned terms. There are in total 160 terms for captioning. In
our experiments, 1,740 images are set aside for testing. The
graph matrix is constructed exactly as in [18], which con-
tains 54,200 nodes and 354,186 edges.

Shttp://www.informatik.uni-trier.de/-ley/db/

604

Parameter Settings. There are two parameters in the
proposed ProSIN: ¢ for random walk with restart, and &
for the neighborhood size of a given negative node. We
set ¢ = 0.95 (as suggested in [25]). To determine k, a para-
metric study has been performed* and ProSin shows little
sensitivity to k for a large range of settings (from & = 2 to
k = 10). For the experimental results in this paper, k is set
to be 5.

Machine Configurations. For the computational cost,
we report the wall-clock time. All the experiments ran on
the same machine with four 3.0GHz Intel (R) Xeon (R)
CPUs and 16GB memory, running Linux (2.6 kernel). For
each experiment, we run it 10 times and report the average.

5.2 Effectiveness: Case Studies

In both the proposed ProSIN and the original random
walk with restart, the proximity score is defined as the
steady-state probability . Therefore, we expect it to enrich
a broad range of applications by replacing the original ran-
dom walk with restart with our ProSIN. In this subsection,
we present three applications as case studies: neighborhood
search, center-piece subgraphs, and image caption.

Neighborhood Search. By incorporating the users’
feedback, we can allow interactive neighborhood search on
the graph. Fig. 4 gives one such example, where we want
to find the top 10 neighbors of ‘KDD’ conferences (i.e,
the 10 most similar conferences as ‘KDD’) from the AC
dataset. In Fig. 4(a), we plot the initial results when there
is no side information (i.e, P = ¢ and N’ = ¢). Sub-
jectively, the result makes sense, which reflects two ma-
jor sub-communities in ‘KDD’: the Al/statistic community
(e.g., ICML’, ‘NIPS’, and ‘IJCAI’) and the databases com-
munity (e.g., ‘SIGMOD’, ‘“VLDB’, ‘ICDE’ etc). Then, if
the user gives negative feedback on ‘ICML’ (i.e, P = ¢
and N' = {/ICML'}), all the Al/statistic related confer-
ences (‘NIPS’ and ‘IJCAI’) disappear (See Fig. 4(b)). In
Fig. 4(c), we present the updated result if the user fur-
ther gives some positive feedback on ‘SIGIR’, which is one
of the major conferences on information retrieval. Again,
the result confirms the effectiveness of ProSIN: positive
feedback on ‘SIGIR’ brings more information retrieval re-
lated conferences (e.g, “TREC’, ‘CIKM’, ‘ECIR’,‘CLEF’,
‘ACL, ‘JCDL, etc).

Center-Piece Subgraphs. The concept of connec-
tion subgraphs, or center-piece subgraphs, was proposed
in [7, 22]: Given @) query nodes, it creates a subgraph H
that shows the relationships between the query nodes. The
resulting subgraph should contain the nodes that have strong
connection to all or most of the query nodes. Moreover,
since this subgraph H is used for visually demonstrating
node relations, its visual complexity is capped by setting an
upper limit, or a budget on its size. These so-called con-

4We skip the details of the parametric study for brevity.

'ICDM' 'TCDM' 'SIGIR'
'ICML' 'SDM' '"TREC'
'SDM' "PKDD' 'CIKM'
'VLDB' 'ICDE' 'ECIR!
'ICDE' "VLDB' 'CLEF
'SIGMOD' 'SIGMOD' 'ICDM'
'NIPS' "PAKDD' JCDL!
'PKDD' 'CIKM' 'VLDB'
TICAT 'SIGIR' 'ACL'
'"PAKDD' 'WWW' 'ICDE'
(a) No feedback | (b) A" = {‘ICML/} | (©) N = {ICML/}
P = {'SIGIR'}

Figure 4. Interactive neighborhood search for
‘KDD’ conference.

nection subgraphs (or center-piece subgraphs) were proved
useful in various applications, but currently cannot handle
users’ interaction (i.e, feedback).

One of the building block in the original center-piece
subgraphs [22] is to use RWR to measure the proxim-
ity from the query nodes to the remaining nodes on the
graph. Therefore, by replacing the original random walk
with restart by the proposed ProSIN, we can naturally deal
with the users’ interactions (for details of center-piece sub-
graph, please refer to [22]).

Fig. 5 plots an example to find the center-piece sub-
graphs between two researchers (‘Andrew Mccallum’ and
“Yiming Yang’) from ML dataset. In Fig. 5(a), we plot the
initial results when there is no side information (i.e, P = ¢
and N = ¢). It can be seen that there are two major connec-
tions between ‘Andrew Mccallum’ and ‘Yiming Yang’: one
connection is on text mining/information retrieval (through
‘Rebecca Hutchinson’, ‘Xuerui Wang’, ‘Tom M. Mitchell’,
‘Sean Slattery’ and ‘Rayid Ghani’), and the other con-
nection in on Al/statistics (throught ‘John D. Laffterty’,
‘Zoubin Ghahramani’ and ‘Jian Zhang’). Fig. 5(b) gives
the updated result if the user gives negative feedback on
‘Tom M. Mitchell’. It can be seen that the whole connection
on text mining/information retrieval disappears, and more
connection on Al/statistics (e.g. through ‘Andrew Ng’ and
‘Michael I. Jordan’) shows up.

Image Caption. Here, the goal is to assign some key-
words for a given image as its text annotation. In [18], the
authors proposed a graph based solution and showed its su-
periority over the traditional methods in feature space. The
key idea of [18] is to construct an image-keyword-region
graph and use RWR to measure the relevance between the
test image and the known keywords. Similar to center-piece
subgraphs, replacing RWR by ProSINcan easily incorporate
side information (if available) in such process.

Fig. 6 presents the average precison/recall on CoMMG
dataset. Here, the side-information is simulated as follow-
ing: for each test image, 5 keywords that are most rele-
vant to the test image based on the current proximity mea-
surement are returned for users’ yes/no (i.e., correct/wrong

605

Rebecca Slattery 1
ﬂ Hutchinson l/_/ S—
J Xuerui g:yld‘
Andrew Wang =
Mccallum L
Jian Zhang
L JohnD. 2 /
Laffterty
(a) No feedback
Andrew 7 Michael I Rong
Ng Jordan
2 John D. 2
Laffterty

1
4
Fernando Xiaojin

C.N.Pereira Zhu lLeolig

(b) Negative feedback on ‘Tom M. Mitchell’
Figure 5. Interactive center-piece subgraphs
between ‘Andrew Mccallum’ and ‘Yiming
Yang’.

caption) confirmation. Here, we also compare two sim-
ple strategies: (1) ‘RemNeg’, where the negative nodes are
simply removed from the graph; and (2) ‘LinCom’ [13],
where the proximity scores from positive/negative nodes are
added/substracted from the score from the test image. From
the figure, it can be seen that our ProSIN largely improves
both precision/recall for image caption task by incorporat-
ing such side information. For example, it improves the
precision by 13.59% (44.02% vs. 30.43%) and the recall by
17.39% (57.54% vs. 40.15%) when the prediction length is
4. Tt is interesting to notice that if we simply remove the
negative nodes from the graph, it will actually hurts the per-
formance (‘RemNeg’). As for ‘LinCom’, it can be seen that
(1) the improvement is limited compared with the proposed
ProSIN for short prediction length; and (2) it might hurt the
performance with the increase of the prediction length.
5.3 Efficiency

In this subsection, we study the quality/speed trade-off
of the proposed Fast-ProSIN. We use the CoMMG dataset
(since it is the only one with ground truth among the three
datasets we used in this paper). Here, we fix the predic-
tion length to be 4 (the results with other prediction length
are similar and therefore skipped for brevity), and we com-
pare the precision/recall between Fast-ProSIN and ProSIN
where in ProSIN random walk with restart is performed by
the iterative method.’ Compared with ProSIN, there is one
more parameter in Fast-ProSIN, the rank of the low-rank
approximation for NB_LIN_Pre(). We vary this parame-
ter from 100 to 600 (denoted as Fast-ProSIN(100), Fast-

3 An alternative choice for ProSIN is to run NB_LIN_Pre() on A and
A respectively. However, we find it needs more wall-clock time but leads
to lower quality compared with the iterative method. Therefore, we only
compare the proposed Fast-ProSIN with that by iterative method.

—4— ProsiN

~ <« - RemNeg

Mean Precision
)
[N
3]

4 6 8 10 12 14 16 18 20
Prediction Length

(a) Mean precision

Mean Recall

03 & —O— Initial
4 - 4‘ - b— LinCom
024 < —4— ProsIN
~ <]~ Rem Neg
o1 6 8 0 12 14 16 18 20
Prediction Length
(b) Mean recall

Figure 6. Incorporate side information for im-
age caption.

<3 Initial

O Fast-ProSIN(100)
@ Fast-ProSIN(200)
O Fast-ProSIN(300)
@ Fast-ProSIN(400)
B Fast-ProSIN(500)
M Fast-ProSIN(600)
[OProsIN

o Lid]

Time

Precision Recall

Figure 7. Quality/speed trade-off of Fast-
ProSIN.

ProSIN(200), etc in Fig. 7). In order to put quality/speed in
the same figure, we normalized (1) precision/recall by the
largest value for ProSIN, and (2) time by the longest value
for ProSIN.

From Fig. 7, it can be seen that the proposed Fast-ProSIN
achieves significant speedup while maintaining high qual-
ity. For example, Fast-ProSIN(100) is 49x faster than
ProSIN (the most right one) while it preserves 93.6%
precision (41.2% vs. 44.0%) and 94.0% recall (54.1%
vs. 57.5%); Fast-ProSIN(400) is 16x faster than ProSIN
while preserving 96.1% precision (42.4% vs. 44.0%) and
96.7% recall (55.6% vs. 57.5%). Overall, Fast-ProSIN is
10~49x faster than ProSIN, while preserving more than
93.0% quality (for both precision and recall). Note that
in all cases, Fast-ProSIN significantly improves the preci-
sion/recall when compared with the initial case (the left-

606

most dashed bar). As for the wall-clock time, ProSIN need
3.7 hours to annotate all the 1,740 images, while Fast-
ProSIN(100) only needs 4.5 minutes.

6 Related Work

In this section, we review the related work, which can be
categorized into two parts: node proximity and matrix low
rank approximation.

Node Proximity. One of the most popular proximity
measurements is random walk with restart [13, 18, 25],
which is the baseline of ProSIN. Other representative prox-
imity measurements include the sink-augmented delivered
current [7], cycle free effective conductance [16], surviv-
able network [10], and direction-aware proximity [24]. All
these methods only consider the graph link structure and ig-
nore the side information. Although we focus on random
walk with restart in this paper, our approach (i.e., to use the
side information to refine the graph structure) can be applied
to other random walk-based measurements, such as [7, 24].
In term of dealing with the side information on ranking, our
work is also related to [3], where the goal is to use partial
order information to learn the weights of different types of
edges. In term of computation, the fast algorithm (NB_LIN)
for random walk with restart in [25] is most related to the
proposed Fast-ProSIN. Our Fast-ProSIN differs from that in
[25] in the sense that the graph structure in our setting keeps
changing by the side information, whereas it is fixed in [25].
The core idea behind the proposed Fast-ProSIN is to lever-
age the smoothness between graph structure with/without
side information. In [26], the authors has used the simi-
lar idea to track the proximity/centrality on a time-evolving
skewed bipartite graph. Other remotely related work in-
cludes [1 1], where the goal is to propagate the trust/distrust
to predict the trust between any two persons.

Graph proximity is an important building block in many
graph mining settings. Representative work includes con-
nection subgraphs [7, 16, 22], neighborhood search in bipar-
tite graphs [20], content-based image retrieval [13], cross-
modal correlation discovery [18], the BANKS system [2],
link prediction [17], pattern matching [23], ObjectRank [4],
RelationalRank [8] and recommendation system [5]. Note
that for the ranking-related tasks (such as neighborhood
search, image retrieval, etc.), we can also use a linear com-
bination strategy suggested in [13], which itself includes
personalized PageRank [12] as a special case when neg-
ative set is absent, to incorporate like/dislike type of side
information. Our experimental evaluation on image cap-
tion task shows that although it is effective for small predic-
tion lengths, its performance is not as good as the proposed
ProSIN and sometimes it actually hurts the performance.
What is more important, it is not clear how to use such strat-
egy (linear combination) for more complicated applications
(such as center-piece subgraphs, pattern match etc). This is
exactly one major advantage of the proposed ProSIN: it can

be easily plugged into such applications by simply replac-
ing the original proximity measurement by our ProSIN.
Low Rank Approximation. Low rank approxima-
tion [9, 6, 1] plays a very important role in graph min-
ing. For example, the low rank approximation structure
is often a good indicator to identify the community in the
graph. A significant deviation from such structure often
implies anomalies in the graph. For the proposed Fast-
ProSIN, we need the low rank approximation in the pre-
computational stage (in function NB_LIN_OQ()). The
most popular choices include SVD/PCA [9, 15] and random
projection [14]. More recent methods includes CUR [6] and
its improved version CMD [21] to deal with the sparseness
of many real graphs. Notice that our Fast-ProSIN is orthog-
onal to the specific method of low rank approximation.

7 Conclusion

In this paper, we study how to incorporate like/dislike
type of side information in measuring node proximity on
large graphs. Our main contributions are in two folds. First,
we proposed a novel method (ProSIN) to incorporate side
information in measuring node proximity on large graphs
and showed its broad applicability through various case
studies. Second, to enhance the efficiency of ProSIN, we
also took advantage of the smoothness of the graph struc-
tures with/without side information and proposed a fast al-
gorithm (Fast-ProSIN). We demonstrated that Fast-ProSIN
achieves significant speedup (up to 49x) in our evaluation
on real datasets. Overall, we expect the proposed algorithms
to enrich a broad range of applications that receive online
feedback/side information.

References

[1] D. Achlioptas and F. McSherry. Fast computation of low-
rank matrix approximations. J. ACM, 54(2), 2007.

B. Aditya, G. Bhalotia, S. Chakrabarti, A. Hulgeri, C. Nakhe,
and S. S. Parag. Banks: Browsing and keyword searching in
relational databases. In VLDB, pages 1083-1086, 2002.

A. Agarwal, S. Chakrabarti, and S. Aggarwal. Learning to
rank networked entities. In KDD, pages 14-23, 2006.

(2]

(3]

[4] A. Balmin, V. Hristidis, and Y. Papakonstantinou. Objec-
trank: Authority-based keyword search in databases. In

VLDB, pages 564-575, 2004.

H. Cheng, P.-N. Tan, J. Sticklen, and W. F. Punch. Rec-
ommendation via query centered random walk on k-partite
graph. In ICDM, pages 457462, 2007.

P. Drineas, R. Kannan, and M. W. Mahoney. Fast monte
carlo algorithms for matrices iii: Computing a compressed
approximate matrix decomposition. SIAM Journal of Com-
puting, 2005.

C. Faloutsos, K. S. McCurley, and A. Tomkins. Fast discov-
ery of connection subgraphs. In KDD, pages 118-127, 2004.

(5]

(6]

(7]

607

(8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

F. Geerts, H. Mannila, and E. Terzi. Relational link-based
ranking. In VLDB, pages 552-563, 2004.

G. H. Golub and C. F. Van-Loan. Matrix Computations.
The Johns Hopkins University Press, Baltimore, 2nd edition,
1989.

M. Grotschel, C. L. Monma, and M. Stoer. Design of surviv-
able networks. In Handbooks in Operations Research and
Management Science 7: Network Models. North Holland,
1993.

R. V. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propa-
gation of trust and distrust. In WWW, pages 403-412, 2004.

T. H. Haveliwala. Topic-sensitive pagerank: A context-
sensitive ranking algorithm for web search. [EEE Trans.
Knowl. Data Eng., 15(4):784-796, 2003.

J. He, M. Li, H.-J. Zhang, H. Tong, and C. Zhang. Manifold-
ranking based image retrieval. In ACM Multimedia, pages
9-16, 2004.

P. Indyk. Stable distributions, pseudorandom generators, em-
beddings and data stream computation. In FOCS, pages 189—
197, 2000.

K. V. R. Kanth, D. Agrawal, and A. K. Singh. Dimensional-
ity reduction for similarity searching in dynamic databases.
In SIGMOD Conference, pages 166-176, 1998.

Y. Koren, S. C. North, and C. Volinsky. Measuring and ex-
tracting proximity in networks. In KDD, pages 245-255,
2006.

D. Liben-Nowell and J. Kleinberg. The link prediction prob-
lem for social networks. In Proc. CIKM, 2003.

J.-Y. Pan, H.-J. Yang, C. Faloutsos, and P. Duygulu. Au-
tomatic multimedia cross-modal correlation discovery. In
KDD, pages 653—-658, 2004.

W. Piegorsch and G. E. Casella. Inverting a sum of matrices.
In SIAM Review, volume 32, pages 470-470, 1990.

J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos. Neighbor-
hood formation and anomaly detection in bipartite graphs. In
ICDM, pages 418-425, 2005.

J. Sun, Y. Xie, H. Zhang, and C. Faloutsos. Less is more:
Compact matrix decomposition for large sparse graphs. In
SDM, 2007.

H. Tong and C. Faloutsos. Center-piece subgraphs: problem
definition and fast solutions. In KDD, pages 404—413, 2006.

H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-Rad. Fast
best-effort pattern matching in large attributed graphs. In
KDD, pages 737-746, 2007.

H. Tong, C. Faloutsos, and Y. Koren. Fast direction-aware
proximity for graph mining. In KDD, pages 747-756, 2007.

H. Tong, C. Faloutsos, and J.-Y. Pan. Random walk with
restart: Fast solutions and applications. Knowledge and In-
formation Systems: An International Journal (KAIS), 2008.

H. Tong, S. Papadimitriou, P. S. Yu, and C. Faloutsos. Prox-

imity tracking on time-evolving bipartite graphs. In SDM,
pages 704715, 2008.

