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Abstract—The adoption of the cloud computing model contin-
ues to be dominated by startups seeking to build new applications
that can take advantage of the cloud’s pay-as-you-go pricing and
resource elasticity. In contrast, large enterprises have been slow
to adopt the cloud model, partly because migrating legacy appli-
cations to the cloud is technically non-trivial and economically
prohibitive. Both challenges arise, in part, from the difficulty in
discovering the complex dependencies that these legacy appli-
cations have on the underlying IT environment. In this paper,
we introduce a novel Kullback-Leibler (KL) divergence based
method that can systematically discover the complex server-to-
server and application-to-server relationships. We evaluate our
method using five real datasets from large enterprise migration
efforts. Our results demonstrate that our new method is capable
of finding critical application correlations; it performs better than
traditional approaches, such as Bayesian or mutual information
models. Additionally, by cleverly subdividing the sample space, we
are able to uncover intriguing phenomena in different subspaces.
These analyses aid migration engineers in a variety of tasks
ranging from migration planning to failure mitigation, and can
potentially lead to significant cost reduction in migration to cloud.

I. INTRODUCTION

Cloud computing is disrupting the traditional models of
delivering IT. Its appeal arises from features like pay-as-you-go
pricing, low upfront investment, resource elasticity and well-
defined management APIs. These “zero-friction” features have
fueled rapid adoption by startups developing new applications.
However, large enterprises—which are plagued with legacy
applications—have been slow to adopt the cloud model. This
is primarily because of the associated cost—both technical
and economical—of migrating legacy applications to this new
delivery model.

In theory, migrating an enterprise application to the cloud
should be a straightforward task. It should require packing the
application codebase and underlying data, then instantiating
them on the target cloud environment. In practice, the migra-
tion process is often error-prone and high-risk for three primary
challenges. First, enterprise applications have strong depen-
dencies on the underlying operating systems (OSs), network
topology and configurations, security policies, storage subsys-
tem, etc. Figure 1 shows a typical dependency structure for an
enterprise application. Second, these dependencies are seldom
fully-known. Based on our experience with over 20 large
enterprise migration efforts, even with efforts like CMDB [1],
a significant percentage of application dependencies are either
missing or incorrect. Third, enterprise applications are also
mission-critical. Thus, detangling an application and migrating
it cannot negatively impact its day-to-day operation.

Given the above challenges, there is clearly a strong need
for enterprises to discover current deployments and establish

complete mappings, starting from the enterprise application
all the way through the software stack to server hardware,
storage subsystem, and network. There has been extensive re-
search work on dependency discovery across multiple research
domains [2], [3], [4]. Network-based monitoring via NetFlow
information from routers [3] and probing running applications
from the network [4] are two well-known methods. There
are also a number of commercial products focusing on IT
discovery [5], [6]. They generally work by either statically
exploring configuration files or monitoring the running sys-
tem. Configuration-based approaches depend on the configu-
ration files accurately capturing the dependencies. In contrast,
monitoring-based approaches depend on frequent occurrences
of specific events (e.g., establishing a TCP socket between two
servers). When used together, these tools provide a good pic-
ture of a deployed system. However, with thousands of servers
scanned and discovered, tremendous amount of information
about internal (components in a server) and external (server-
to-server) dependencies are captured. Combing and sorting out
this information in a meaningful and insightful way is non-
trivial and often error-prone.

In this paper, we propose a novel technique for systemat-
ically discovering complex server and application dependen-
cies, and validate our findings using real enterprise data. Our
work builds on an earlier system called Galapagos [2], which
mainly focuses on automatically constructing applications-
data relationships. In this paper, we use Galapagos as a data
collection agent only. We then introduce, implement, and eval-
uate a novel and scalable Kullback-Leibler (KL) divergence-
based method for discovering complex server-to-server and
application-to-server relationships.

To summarize, this paper has the following technical con-
tributions:

e We introduce a novel Kullback-Leibler (KL)
divergence-based method that can systematically
discover the complex server-to-server and application-
to-server relationships. To the best of our knowledge,
this is the first time such method is applied to the
domain of server/application relationship discovery.

e  We evaluated the methods using five real enterprise
datasets that were collected during large migration
projects. Our results demonstrate that the new method
is capable of finding critical application correlations;
it performs better than traditional methods (such as
the Bayesian and mutual information models) for
discovering server-to-server and application-to-server
relationships.

e  We perform additional dependency analysis by clev-
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Fig. 1.

A typical enterprise software and storage stack. An arrow from Component A to Component B means that A depends on B. A dashed line depicts

internal—server—dependency and a solid like depicts external—network—dependency.

erly subdividing the sample space and show that we
are able to uncover intriguing phenomena in different
subspaces (grouping).

The rest of paper is organized as follows. In Section II, we
describe the role of discovery in planning a large-scale migra-
tion. In Section III, we propose our probabilistic approaches to
generate meaningful dependency and co-occurrence patterns.
Three migration application scenarios are discussed in Section
4, followed by empirical evaluation using KL method. In Sec-
tion 5, we discuss related works in cloud computing, existing
techniques in dependency discovery. Finally, we conclude in
Section 6.

II. MIGRATION PLANNING

In this section, we describe the role of migration plans
during a typical large migration project. At a high level, a
migration plan consists of a series of phases, each detailing (1)
what parts (cluster) of the IT infrastructure to move, (2) their
target environment, and (3) the change window to perform
the move. Creating a plan starts with discovering as much
information about the IT infrastructure as possible. The goal
is to minimize the overall cost of migration and reduce the
risk of any potential down time.

A migration plan is needed because it is infeasible
to migrate tens of thousands servers—typical of enterprise
customers—in a single shot. Thus, a migration engineer needs
to partition the servers into smaller clusters, each of which
can then be migrated during a small change window (e.g.,
during the weekend). Creating a migration plan is an extremely
complicated task. In many ways, it is as a large multi-constraint
scheduling problem. At minimum, the plan needs to satisfy the
following two constraints:

e Each batch should be small enough so that the servers
can all be migrated within the scheduled change
window, but large enough to maximize productivity.
Scheduling too many servers in the same change
window means that some servers will not get migrated,
thus requiring a change to the global migration plan
to accommodate the left-over servers. Scheduling too
few servers in the batch leads to underutilization of

[

]

/

foe

ummxmmi-ﬂ;"imﬁ‘g‘
! NN !

Fig. 2. A portion of the server-to-server dependency graph of a medium
scale data center. Dashed circles and lines indicate an example of a three-tier
server dependency architecture, from WebShpere Application Server (WAS)
— DB2 database server — external storage server.

the migration engineers’ time, driving up the cost of
migration.

e  Servers that depend on each other should be migrated
in the same batch. Otherwise, the servers would be
separated by a slow network link (e.g., one of them is
migrated to the target environment, whereas the other
stays in the source environment). This may lead to
significantly reduced performance.

Traditionally, the task of creating the migration plan is
done manually. It requires reasoning about tens of thousands
of servers with millions of connections between them. It is,
thus, not uncommon for a plan to take weeks, if not months
to complete.

Figure 2 shows an example of what a typical connectivity
graph looks like for an enterprise IT environment. Dotted
circles and lines in Figure 2 indicate a critical three-tier
architecture (WebSphere Application Server (WAS) — DB2
— Storage) that is hidden in a messy graph. Thus, the
major obstacle in automating this step is identifying critical



dependencies among servers, which is the focus of this paper.
By automatically identifying the dependencies between servers
and their components, we can significantly reduce the time
it takes to devise a migration plan, leading to much reduced
migration cost.

III. MODEL
A. Problem Formulation

We approach the problem of finding relationships among
hosts by focusing on finding relationships among the middle-
ware components installed on the hosts. We are interested in
finding correlations between occurrences of different middle-
ware components. The problem of discovering correlations is
analogous to finding collocations in texts and can be cast as
modeling the conditional probability of an event given another
event. More formally, we let

Va,y € {MWconfigurations}, Find p(z|y),

where = and y are members of a set of middleware (MW) con-
figurations. Examples of MW are application server, database,
etc. The task is to find the conditional distribution of p(x|y).
The problem can also be examined from an information
retrieval perspective. Suppose one wants to find all the hosts
on which a particular middleware y is present. In the hosts
that are retrieved, we ask what is the chance that the hosts
also contain another middleware z.

The following subsections detail two methods for modeling
P(z|y). The first is mutual information and the second is a
generalized Kullback-Leibler divergence method. Additionally,
we also present results using a straightforward Bayes formula
for conditional probability:

p(zly) =

B. Mutual Information

Mutual information (MI) is a measure of the information
overlap between two random variables. In this subsection,
we briefly review definitions and properties of MI, and then
introduce one of the mutual information methods, pointwise
mutual information (PMI).

The mutual information between two random variables X
and Y, whose values have marginal probabilities p(x) and
p(y), and joint probabilities p(z,y), is defined as:

) — o)1 28
I(X,Y>—§p( )1 SOSTR (1)

The information overlap between X and Y is 0 when the two
variables are independent, as p(x)p(y) = p(x,y).

Pointwise mutual information is a measure of how much
the actual probability of a particular co-occurence of events
p(z,y) differs from the probabilities of the individual events
if they are assumed to be independent. Throughout this paper,
we use the pointwise mutual information (PMI) of a pair <
z,y >, wherer€ X and y € Y:

I(z,y) =In 20 @)

C. The Kullback-Leibler Divergence

Kullback-Leibler model is a measure of information on
two probability distributions associated with the same ex-
periment. The Kullback-Leibler divergence (KLD) measures
the difference between two probability distributions over the
same problem space. The Kullback-Leibler divergence of the
probability distributions p, ¢ on a finite set X is defined as
follows:

Drr(pllg) = > p(x)In

zeX
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Our idea here is similar to the exponential models con-
structed by the maximum entropy framework [7]. An expo-
nential model has three components: a prior distribution, a set
of questions, and the weights associated with the questions. A
prior distribution, po(z|y), captures any prior knowledge the
modeler may have on the domain. The simplest kind of prior
is a uniform distribution signaling there is no prior knowledge.
The questions are asked on the joint events, (z,y). The
questions are usually binary-valued, although they do not have
to be. An example of a binary-valued question is if middleware
z and middleware y are both present on the same host. The
questions are formally called feature functions. The weights
on the questions determine how important or how valuable
the questions are in maximizing an objective function. An
exponential model combines the three components as follows:

plaly) = polely) s o Az @

where {¢1, @2, ...} is the set of binary-valued features defined
on the x and y, and {1, P2, ...} is the set of weights associated
with the features. There is a A for each ¢. Z is a normalization
factor, which is computed by summing over all the events in
the data and over all the feature functions as in the following

equation:
Zy) = exp > Nidi(z,y). ®)

In the maximum entropy framework, the model p(z|y) must
satisfy expectation constraints on the features. The constraint
on the model is that the model’s expectation of feature ¢; must
be the same as the empirical expectation in the data. Let the
model’s expectation of ¢; be F'¢;, and the expected value of
¢; in the data be E¢;. The constraint is given by the following
equation: R

E¢; = E¢;,Vi. (6)

_ The model’s expectation E¢; and the empirical expectation
E ¢, are given respectively in the following equations in which
p denotes the empirical distribution in the data:

E¢i= Y plaly)py)éi(z,y), (7)
rzeX,yey
and ~
E¢i= > pl,y)ei(z.y). ®)

rzeX,yeY

A typical objective function is the likelihood of the data.
Log likelihood of the data is given in the following equation:

Z = Inp(z;|y:). 9)

i



Hosts MW_CLASS | MW_SUBCLASS | VENDOR | SERVICE_PACK DISTRIBUTION_NAME INSTALL_PATH
cam-db-x DBMS DB2 IBM 8.2 DB2 Enterprise Edition .Jopt/db2
cam-db-x FS JFS2 IBM
cam-db-x AIX AIX_HACMP IBM AIX HACMP cluster manager ../sbin/cluster
cam-de-y APS WAS IBM 6.0.2.17 IBM WebSphere APP Server ../WAS/AppServer
cam-de-y WEB THS IBM 6.0.2.15 IBM HTTP Server ..Just/IBMIHS
TABLE L EXAMPLE OF THE HOST MIDDLEWARE INSTALLATION DOCUMENT. COLUMN MW _CLASS IS A GENERAL, BROAD, AND

VENDOR-INDEPENDENT CLASS. FOR EXAMPLE, DBMS STANDS FOR DATABASE MANAGEMENT SYSTEM, AND APS STANDS FOR APPLICATION SERVER.
COLUMN MW _SUBCLASS HAS VENDOR-DEPENDENT MIDDLEWARE CORRESPONDING TO THE MW _CLASS. FOR EXAMPLE, DBMS_DB2, OR
APS_WAS CAN DESCRIBE A MIDDLEWARE COMPONENT.

Maximizing the data likelihood is equivalent to minimizing
the Kullback-Leibler divergence between the prior P and the
conditional model P that satisfies the expectation constraints.
In many applications (such as [8] and [9]), the normalization
factor Z is unnecessary. However, one cannot simply drop Z
because to maximize the data likelihood, one simply needs to
increase the As and the likelihood can be increased indefinitely.
To properly remove the normalization factor Z, a new well-
defined optimization function is needed. Several researches
have reported extensions to the entropy maximization and gen-
eralized Kullback-Leibler divergence. Previous uses of these
extended models include a variety of topics including logistic
regression, boosting and information retrieval. If we define an
unnormalized non-negative exponential function 7' ([8]):

T = {T(z|y) = To(z|y)e* =¥}, (10)

and a generalized Kullback-Leibler divergence [10]:

+Z Z T (z|y;) In

1=1zeX

Ti (aly)
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where N is the number of events in the data and T'(1) denotes
a constant function, then the optimal weights of the scalar
features which are subject to the expectation constrains have
a closed form solution as follows:
A =In %, (12)
E[g]

where E[¢] and E[¢] are the model’s empirical expectations
as defined in Equations (7) and (8), respectively. The optimal
gain over the prior is thus as follows:

G = L(\*) — L(0). (13)

D(Th||Tz) =

D. Compute Features and Expectations

We now use a concrete example to show how to
compute the features and expectations. Suppose S =
{MW7 ... MWy} is the collection of all occurrences of all
middelware components. Table I shows an example of a set
of hosts H and their installed middlewares MW . Further
suppose that we have no prior knowledge and that any member
of S is equally likely to co-occur with any given middleware
MW;. That is, p(MW;|MW;) = 3. We define a binary
feature function:

1 if MW; and MW; on the same H;

MW.. MW.) —
oMWs, MW;) {0 otherwise.

(14)
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Fig. 3. Galapagos Discovery Framework
Note that this feature is separable as follows:
S(MW;, MW;) = ¢y (MW,) o (MW;). (15)

Equation (15) is equivalent to Equation (14) because M W;
and MW co-occur if and only if they both are found on the
same host. Then, the empirical expectation of feature (14) is
thus:

do—Zqﬁ MW;, MW;) =

=1

Nij, (16)

where N;; is the number of hosts containing both MW, and
MW;. The model’s expectation of feature (14) is then:

N
A=Y Y SeMW)s(Mwy). a7

i=1 MWeS

Once dy and d are thus computed, we proceed to compute A*
and the optimal gain according to Equations (12) and (13).

IV. EVALUATION
A. Implementation

Our implementation builds on Galapagos [2], an existing
discovery framework, as shown in Figure 3. Galapagos in-
cludes a light-weight discovery front-end that collects informa-
tion from servers and a back-end that processes and analyzes
the collected data to provide high-level insights into the IT
environment.

We implemented—using a mixture of Perl and C—the
three algorithms outlined in Section IIl: mutual information,
Kullback-Leibler Divergence, and naive Bayesian. Using the
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Fig. 4. Three Scenarios: Hodgepodge, Sausage, and Client-Server Relations.

data collected from Galapagos, we then applied these algo-
rithms to compute the dependencies of middleware compo-
nents among hosts.

B. Application Scenarios

In addition to computing the middleware correlation among
all hosts, we also investigate how the correlations change in
different partitions of the hosts. Some hosts connect to (or
depend on) other hosts for certain middleware, application, or
service. From this dependency information, we can divide the
space of all hosts into a variety of subspaces and examine the
correlation of middleware components in each subspace.

We describe two different subspaces based on the de-
pendencies among the hosts. Note that a middleware MW
can be described as its MW _CLASS_MW_SUBCLASS
as shown in Table I. For readability, we only use
MW_SUBCLASS in the rest of this paper (e.g., “WAS’,
‘DB2’, and ‘MSQ’, etc.).

Scenario 1: Hodgepodge Relation. Suppose there are k
dependency types among all the hosts. In the first scenario, we
group together those hosts engaged in the same dependency
D. We call this smaller group of hosts Hp. We then compute
correlations within the group. The correlations we compute are
still within each host and do not depend on D. The dependency
type D is only used to define the group and is not retained
in further computation. Each host in Hp is treated equally
and separately, hence the name hodgepodge. In essence, this
scenario computes intra-host correlation on a smaller space.

Scenario 2: Sausage Relation. Unlike Scenario 1, this sce-
nario retains the dependency information D and the correla-
tions are computed across hosts. The question we ask here is
what is P(MW;|MW;), where MW; is on host; and MW is
on host;. Furthermore, host; and host; have the dependency
D. This scenario computes inter-host correlations within the
same dependency type D. Figure 4 is a pictorial illustration of
this scenario. The links in the figure resemble sausages, hence
the name sausage.

Scenario 3: Client-Server Relation. A third way to group
the hosts is to group all the clients together and all the
servers together. Each dependency type D involves two hosts
which can be conceptually thought of as a client and a server.
This scenario 3 is called client-server. Correlations are then
computed within the client and server subgroups, respectively.

Accounts A B C1 C2 D
Servers 100 300 500 1000 500
OS Types 3 6 3 9 6
DB Types 3 4 4 5 3
HW Models 10 15 38 45 35
TABLE II. HIGH LEVEL CHARACTERISTICS OF DATASETS
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Comparison between Bayes, PMI, and KLD
C. Experimental Setup

We choose five datasets from 20 large migration projects.
Table II summarizes the high level description of the corre-
sponding data centers. We can see that each data center is
a very complex environment that runs on multiple operating
systems, hardware, and utilizes different databases for mission-
critical applications. Each server among the chosen data cen-
ters also contains multiple installations of different middleware
components, such as various management tools, Web services,
and storage systems, etc.

D. Experimental Results

Comparison of Three Conditional Probability Methods.
These are Bayes, Pairwise Mutual Information (PMI), and
Kullback-Leibler Divergence (KLD). We choose one account
data from Country C1, which contains 500 hosts and over 4K
middleware pairs. Figure 5 plots the distributions of the three
methods across all middleware correlations. From the figure,
we can see that Bayes is flat except for a few spikes at the
beginning and the end. PMI has more variations: too spiky and
more fluctuating. KLD has more discerning power in terms of
more spikes, and is more consistent from the beginning to the
end. The same phenomenon is observed across other accounts.
In the remainder of this section, we demonstrate that how
KLD method can help the migration practitioner to execute
migration tasks.

Geographic Differences. In this experiment, we choose two
pairs of accounts from different national geographic coun-
tries, Country A vs. Country B (Figure 6), and Country Cl
vs. Country C2 (Figure 7). As shown in Figure 6, we see
that the distribution of the paired middleware components
are significantly different (e.g., P(A|B) given B = MSQ)
between these two accounts. In this case, only 2 out of
10 pairs of middleware components are similar (Windows,
VMTOOLS). From Figure 7, we can see that the distribution
of paired middleware components between two accounts from
the same country are very similar. In this case, 7 out of 9



Country A, P (* | MSQ) Country B, P (* | MSQ)

MiddleWare (*) Probability MiddleWare (*) Probability
Windows 0.24 ClearCase 0.19
1is 017 CIFs 018
IBM-DIRECTOR 0.093 DB2 0.087
DISK 0.087 Windows 0.062
SYS 0.076 SMB 0.059
NET 0.076 UNKNOWN 0.059
IP1 0.064 NTFS 0.059
MSEX 0.058 SYM_SF 0.057
VMTOOLS 0.038 AVSYM 0.057
MSCCM 0.025 \ VMTOOLS 0.050
Fig. 6. Middleware configuration differences of two clients in different

geographic areas, given P(x|M SQ). Country A vs. Country B

Country C1, P (* | MSQ) Country C2, P (* | MSQ)

MiddleWare (*) Probability MiddleWare (*) Probability
NTFS 0.094 >R 0.093
Windows 0.094 €——> Windows 0.092
MSEX 0.092 CSRSS 0.092
AVSYM 0.085 AVSYM 0.085
SYM_SF 0.076 MSEX 0.080
CSRSS 0.065 Ms-wmi 0.068
HPSMH 0.059 Mmscem 0.059
1IS 0.058 SYM-SF 0.054
HPSYS 0.057 \ IS 0.052
Fig. 7. Middleware configuration differences of two clients in the same

geographic areas, given P(x|M SQ). Country C1 vs. Country C2

pairs of middleware components (those different middleware
components are in bold font as shown in Figure 7). The same
observation is found across all other middleware pairs (given
different B) and all our clients globally. Reasons that cause
the similar middleware configurations in the same geographic
areas may due to the common practice and regulations applied
in that area, and require further investigation. However, this
information is already very useful to the migration teams
since usually one migration team will simultaneously work
on multiple accounts which are geographically different, and
proper preparation and practice can be taken accordingly.

Probability
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Fig. 8. Scenario 1: Hodagepodge relation in IHS-WAS subspace. X-Y axes
show P(A|B). For example, given B= Powerpath, P(DB2 | B) = 31%.
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Fig. 9. Scenario 2: Sausage relation in IHS-WAS subspace. X-Y axes show

P(A|B). For example, given B= W AS, P(DB2 | B) = 12%.

E. Results of Three Scenarios with KBL

Scenario 1. The Hodgepodge relation represents the intra-host
middleware correlation. In Figure 8, we show the distribution
of paired middleware components within the /HS-WAS group.
We can see that some paired middleware component clearly
stand out from others. For example, given we have seen the
DB2 database, we have over 30% probability that we also
see EMC Powerpath server-resident management tool installed
on the same host to enhances performance and information
availability, in this case to enhance the performance of DB2.
We can also see that, given we see IBM WAS, we have a
slim chance, around 1% probability, to see DB2 database co-
occur on the same host. This finding confirms the common
practice in a normal IT environment that IBM WebSphere and
DB2 database are not installed on the same host. However,
if it does happen, like in this case, the practitioner needs
to pay attention. Similar findings are observed across all
other different subspaces and accounts. Hence, this intra-host
correlation analysis is very useful to the migration team.

Scenario 2. The Sausage relation represents the inter-host
middleware correlation. In Figure 9, we show the distribu-
tion of paired middleware components within the same /HS-
WAS group, but across different hosts. We can see that, for
example, given that we have seen the DB2 database, we have
around 18% probability to see EMC Powerpath toolkit, but on
different host. In comparison to intra-host analysis (Scenario
1), the probability number decreases and tell us that this pair
middleware components can either co-exist on the same host,
or among different hosts (e.g., via network storage system). In
addition, we see that, given we see IBM WAS, we have a high
chance, around 10% probability, to see DB2 database occur on
the another host. Compared with the same middleware pair,
P(DB2 | WAS), in Hodgepodge scenario, the probability in
sausage scenario increase 10 times. Similar phenomenon is
also observed in different middleware subspace as shown in
Figure 10 and Figure 11. For example, given that we see WAS,
we have 20% probability to see logical volume manager (LVM)
on a different host in the same middleware group as shown in
Figure 10.

Figure 12 demonstrates the comparison results between
Hodgepodge and Sausage relation. As expected from multi-
tier applications, in which critical middleware components are
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Fig. 10. Scenario 2: Sausage relation in Net-WAS subspace. X-Y axes show
P(A|B). For example, given B= W AS, P(LVM | B) = 21%.
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Fig. 11. Scenario 2: Sausage relation in Net-ORA subspace. X-Y axes show
P(A|B). For example, given B= W LG (WebLogic), P(NF'S | B) = 33%.

installed at different hosts, the association distribution can be
very different. The grey bars represent Hodgepodge relation
and black bars are for Sausage, and the notation DB2-WAS
illustrates the conditional probability of DB2 given by WAS.
In this last bar chart of the figure, the DB2-WAS, it clearly
demonstrates that P(DB2|WAS) is much higher in Sausage
relation than in Hodgepodge. It means that DB2 and WAS are
more likely installed at two different servers than installed at a
single server. This aligns with common practices. Interestingly,
notice that P(DB2|WAS) and P(Powerpath|DB2) indicate a
critical three tier architecture. The latter 6 middleware pairs
in the chart, from MYS-LVM to DB2-WAS, have the same
behavior. The first 6 middleware pairs (HPUX_SARP - PGS
to DB2-GFS2) are slightly likely to be installed at the same
server. By checking the nature of these software pairs, it is not
critical to install them at different servers. For different data
center operations, they can go either way. These inside finding
will be very helpful for migration planning.

Scenario 3. The Client-Server relation investigates the similar-
ities and differences between client and server configurations.
Correlations are computed for the clients and servers in each
dependency group D. For each group, the distributions of the
clients and servers are compared. In addition, we also add the
overall middleware distribution of all hosts into the comparison
mix. The overall distribution is the one computed is Sec-
tion III-C, where all hosts from the same account are put into
one group. The overall distribution contains more middleware
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Fig. 12. Comparison of Hodgepodge & Sausage relation in IHS-WAS
subspace. X-Y axes show P(A|B). For example, given B= WAS, P(DB2
| B) = 12%. Grey bar is the Hodgepodge relation. Black Bar is the Sausage
relation.
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Fig. 13. Client-Server NET-SMB relation

pairs than either the client or the server distribution in each
dependency group D. Only the middleware pairs present in
the client, server, and overall distributions are extracted for
comparison. Figure 13 plots the three distributions based on
NET-SMB dependency. Figure 13 shows that the client and
server distributions are not far away from each other, but both
are very different from the overall distribution.

V. RELATED WORK
A. Cloud Computing

Cloud computing is not just about a technological im-
provement in data centers, it represents a fundamental change
in how IT is provisioned and used [11]. For enterprises to
use cloud computing, they have to consider the benefits,
risks and effects of cloud computing on their organizations.
Armbrust et al. [12] argued that elasticity is an important
economic benefit of cloud computing as it transfers the costs of
resource over-provisioning and the risks of under-provisioning
to cloud providers. Motahari Nezhad et al. [13] added that
the potentially reduced operational and maintenance costs is
also important from a business perspective. However, little has
been published about the organizational risks of the change
that cloud computing brings to enterprise, nor has been a
systematic study of the complexity of IT transformation to
cloud environments.



B. IT Infrastructure Discovery

Today IT asset and dependency discovery tools are avail-
able from many vendors. They probe network nodes with
requests [4], monitor network traffic [3], or analyze software
configurations [2], [S]. The configuration analysis is done for
packaged middleware and applications such as databases, Java
Enterprise Edition (Java EE) servers, and Enterprise Resource
Management (ERM) systems. For Java EE servers, only the
objects and relations explicitly configured at the server level
are analyzed, such as which Enterprise JavaBeans (EJBs) are
deployed and what resources are declared.

Other research try to observe dependencies at the
operating-system level. On Solaris systems, this is in fact
an option via DTrace [14]. Unfortunately, on other operating
systems no such mechanism is commonly available. The Isof
utility [15] comes closest, but it is not typically installed. There
has been research on instrumenting other operating system
kernels to understand storage dependencies [16], [17]. How-
ever, these tools are typically not available in the enterprise
optimization scenarios that we investigate, and installing an
operating-system level tool on production servers would be
an equally large project as the optimization scenarios them-
selves, and again require detailed prior discovery and analysis
of potential impact. Provenance-aware file systems such as
PASS [18] imply an even larger operating-system change,
because they modify the process-to-filesystem interaction to
obtain comprehensive records of past dependencies between
these two layers. While they are very interesting, they are
certainly not found on the enterprise servers that we are
optimizing.

Existing research [19], [20] focus on methods to discover
cross-domain relationships in distributed systems, either by
statistically analyzing system behavior [19], on the basis of
observation of system activity, or by using system support
(e.g., passing tokens or other metadata over communication
between layers [20]). In addition, several commercial tools
focus on discovery of infrastructure assets by scanning a range
of IP addresses and querying the systems that respond [6],
[5]. Network communication relationships among applications
are discoverable by capturing network packets and analyzing
their headers [21]. Various systems have investigated building
distributed system-dependency graphs using passive methods
such as trace collection and offline analysis [19], [20]. Some
of the uses of a dependency graph include problem determina-
tion, performance analysis, and visualization. Our system and
approach differ from these approaches in that it specifically
discovers a finer-grain scope of dependency between software
components, application-to-server, and server-to-server.

VI. CONCLUSION

In this paper, we introduce a novel Kullback-Leibler (KL)
divergence based method that can systematically discover the
complex server-to-server, application-to-server relationships.
We evaluated the methods using five real client datasets (from
large enterprise migration efforts). We demonstrate how a
generalized KL in the unnormalized maximum entropy frame-
work performs better than standard techniques such as mutual
information. We also show results on mined middleware corre-
lations. Furthermore, analyses on subsampling hosts based on

their dependencies uncover intriguing phenomena in different
subspaces. These analyses can aid migration engineers in a va-
riety of tasks ranging from migration planning to investigating
failures, and significantly reduce migration cost.
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