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Abstract—While early emphasis of Infrastructure as a Ser-
vice (laaS) clouds was on providing resource elasticity tonsl
users, providers are increasingly interested inover-committing
their resources to maximize the utilization and returns of heir
capital investments. In principle, over-committing resouces
hedges that users—on average—only need a small portion of
their leased resources. When such hedge fails (i.e., resgerde-
mand far exceeds available physical capacity), providers ost
mitigate this provider-induced overload, typically by migrating
virtual machines (VMs) to underutilized physical machines
Recent works on VM placement and migration assume the
availability of target physical machines [1], [2]. However in
an over-committed cloud data center, this is not the case. VM
migration can even trigger cascading overloads if performd
haphazardly. In this paper, we design a new VM migration
algorithm (called Scattered) that minimizes VM migrations
in over-committed data centers. Compared to a traditional
implementation, our algorithm can balance host utilizatin
across all time epochs. Using real-world data traces from
an enterprise cloud, we show that our migration algorithm
reduces the risk of overload, minimizes the number of needed
migrations, and has minimal impact on communication cost
between VMs.

Infrastructure as a Service (laaS) is changing how compu

INTRODUCTION

on average—each user only needs half of the requested
resources.

While a high over-commit ratio increases the average
utilization of the underlying resources, it also increatfes
risk of provider-inducedoverload. This type of overload
occurs when (over-committed) users demand enough of
their resources such that—in combination—they exhaust all
available physical capacity. In the example above, if two
users demand 100% of their leased CPU resource, while the
rest remain exactly at 50%, then some users will not get their
fair share. Depending on the scheduling policy, some users
(possibly all) will experience provider-induced overlodal
the case of memory, provider-induced overload can trigger
dramatic drop in application performance [3]. In general,
this problem can be solved by migrating certain VMs on
the overloaded machine to other—relatively under-loaded—
machines. The difficulty arises when the entire data center
is over-committed. Deciding on which VMs to move and
where to move them is important because migration should
mitigate the overload without raising the risk of further
overloads on the destination machines. It should also avoid

tr_legatively impacting the underlying network.

ing resources are being managed, delivered, and consumed.In this paper, we introducBcatteredan online migration
Cloud providers are able to benefit from economies of scal@lgorithm that targets over-committed cloud environments
by pooling large amounts of computing resources and runThe distinguishing characteristics of our algorithm irtgu

ning the underlying infrastructure at higher utilizati@véls

(1) accounts for over-committed resources across all phlsi

than traditional—non-cloud—data centers. Providers alsdénachines, (2) identifies target VMs for migration based on

have the opportunity to over-commit their resources, rgyi

the degree of correlation in their workloads, (3) considers

on natural fluctuations—peaks and valleys—in computingexchanging (or swapping) of VMs across physical machines

demands across individual users.

to achieve its targets, and (4) accounts for network topolog

Over-commitment of resources is not a new concept. It ig0 minimize the impact of migration on VM communication

widely used in the airline industry, for example, to maxieiz COSt. Using extensive simulations based on real workload
seat utilization in departing flights. An airline can sell atraces from a production cloud environment, we show that
number of extra tickets for any particular flight, hedging our algorithm is able to (1) maximize the number of over-

that—on average—a greater number of passengers miss thé@mmitted VMs, while using fewer resources, (2) reduce the
flight. On (supposedly) rare occasions, this hedge can failfisk of cascading overloads, and (3) minimize the impact on
in such case, the airline must shift some passengers ¢ communication cost among VMs.

different flights. Similarly, over-commitment in laaS chisi The remainder of this paper is organized as follows.

allows providers to sell more resources than they actuallsection 11 surveys related work. Section Ill introduces the

have. A physical machine with 8 CPUs, for example, canyata center and network model used for capturing the impact

be sold to 16 users, each being offered 1 CPU per virtuaht migration on VM communication. Section IV describes

machine (VM). In such case, the physical machine has ag,r hroposed migration algorithm, Scattered. Section \-eva

over-commit ratio of 2. The provider is then hedging that— 5tes the efficacy of Scattered. Finally, Section VI conetud
and gives our perspectives on future research.
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Il. RELATED WORK

VM migration has been widely studied in recent years [1], [ T ]
[4], [5], [6], [2]. Sandpiper[1], a VM migration system, I I I
introduced two algorithms: one for deciding when to migrate
and the other for determining what and where to migrate.
It uses a greedy heuristic to move VMs from the most
overloaded host to the least-overloaded host. Shrivagtava
al. focused on minimizing network traffic while considered 4Gbps ...
both inter-VM dependencies and the underlying network Jopeof-Rack Topof Rack Topof-Rack Topof-Rack
topology when making migration decisions [Hntropy[7]

proposed an approach to migrate tasks within a cluster

based on constraint programming. In [4], the authors oeitlin — —r — = —

Core Router

Core Router Core Router

Aggregation

Aggregation Aggregation Aggregation
switch switch switch

switch

1 Gbps link

a scheme for distributing resources among VMs on the Ch thh physica,Mach Ch
same physical server. They consider the relative priaritie
different VMs and their inter-dependencies while alloegti pryscaachies | | erscaacnnes | | eicavacnines | | ehysealachine
resources to them. Zhao and Figueiredo estimated migration Rack 1 Rack 2 Rack 3 Rack 4

costs based on the configurations and running states of
the migrated VMs; they used their estimates for preparing
resource reservation [8]. The work in [9] considers the load

on the communication paths that connect servers to shargghtween1 A7, and other VMs will not change. However,
network storage. Woodt al. used live migration in addition  the communication cost betwedn), and other VMs on
to a sharing-aware VM placement system for optimizing VM host A will probably increase, while the communication cost
placement as workloads change [10]. None of these workgetweeny M7, and VMs on hostB will decrease.

considers the combined effects of VM migration in highly |5 order to evaluate whether the migration of VMs will

over-committed environments. raise consumption of network resources, we use a criterion
I1l. CLOUD DATA CENTER MODEL for measuringhe aggregate traffic rates perceived by every

We consider a relatively standard data center architectursewItCh as introduced by Meng et al. in [12]. Itis defined by

(Figure 1) that consists of a series of connected racks.ifiVith g_ Z Z T O
a single rack, all physical machines are connected to a top- — LT
of-rack switch. While there are numerous ways to connect v
racks together, we assume that the data center uses VihereT;; is the traffic rate from/ M, to VM;, andC;; is
architecture [11] or one of its derivatives. Briefly, VL2 is a the communication cost betweén\/; to V 1/;.
3-tier architecture that us&&liant Load Balancingo spread The communication cost matrix can be analytically ex-
traffic uniformly across network paths. This architecturepressed according to the network architecture. Basically,
provides close to fixed communication cost across all racksVMs located on the same physical machine have lower
From a migration perspective, this architecture has a&ommunication cost than the ones on different machines.
significant influence on the performance of deployed appli\We define the resulting communication cost matrix as:
cations. An application typically consists of multiple com

Figure 1. General architecture of cloud data centers.

(1)

e : S 0, ifi=j
nunialng v (o, tre ter oo opicaten ot [ 3 e st e s e
' P y 7713, if iandj are hosted by the same rack (switch)

appl|ca_1t|on§, workloads, t|me_-of—.day, etc. Clearlyz prh@c. if i and j are hosted by different racks
VM pairs with heavy communication on host machines with )

low network cost can increase network scalability and reduc  1pq traffic rate matrix expresses how often VMs com-

traffic Iater_lcy. The consumpti(_)n (_)f netv_vorl_< resources h??nunicate with each other. We use two traffic models for
been considered as one optlmlzatlon objectlve.when placm@haracterizing different VMs communication modggbal
VMs [12], [2]. In this paper, we build on their model 10 yafic modeland partitioned traffic model Global traffic
derive a more suitable migration strategy in highly over-p,,qe| assumes that VMs communicate with each other at a

commltteq environments. L constant rate, following a Gaussian distribution given as:
Estimating network consumption involves two compo-

nents. One is the communication cost, which depends on 0, ifi=7j;

the underlying network architecture within a data centee T Ty = {r ~ N(p,0?), if i3]
other is the traffic rate between any VM pair. For example,

whenV M, is moved from hostA to hostB, the traffic rate  In this paper, we set = 1, ando? = 0.25.
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Equation 2 to compute the observation valfiegiven in
400 100 Equation 1. Values computed during the migration process
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0 IV. CONSTRAINEDVM M IGRATION

In this section, we first describe a general framework for
VM migration. We then introduce Scattered, a new algorithm
201 for virtual machine migration when physical resources are
over-committed.
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A. General Framework for Migration
40

40 | When resources of a physical machine are aggressively
TR 5 over-committed, all hosted VMs are under a higher risk
() Traffic rate matrix 0 500 for experiencing provider-induced overload. As mentioned

(b) Aggregation incoming rate . . .
earlier, provider-induced overload occurs when a VM re-

Figure 2. Traffic rate matrix (c) generated by partitioneaffic model ~ duires more resources than what it needs, but less resources
based on aggregation outgoing rate (a) and incoming rate (b) than what it leased. Ideally, an effective cloud resource
management system should have the following abilities:

- _ ) 1) Estimates the risk of overload;
The partitioned traffic model allows uneven traffic rates 2) Identifies the best VM(s) to migrate:

among VMs. From our observation of a real—wo_rld enterprige 3) Identifies the most appropriate target physical machine
cloud data center, some VMs can have much higher outgoing g migrate to;

or incoming traffic volume than other. For example, Fig-  4) Minimizes the impact on the underlying infrastructure
ures 2 (a) and (b) show the outgoing and incoming aggregate (e.g., minimize the number of migrations).

traffic rates from ‘."8 randomly sglected VMS’ respectively. In this paper, we focus on the last three abilities and
VM 33 has outgoing and incoming traffic rate more than.

. SN . investigate how provider-induced overload (due to over-
400 MBytes_,/m!n, Wh'Ch is much hlgher Fhan the others. commitment) can be effectively mitigated in a highly-
Our monitoring infrastructure (which is typical of most

dat ‘ lect inf i individual VMs. It constrained environments. While we do not directly study
ata centers) collect information on individua S- 1 the first ability (in the list above), we believe that sucdelss

collects measgrements (at a 15-min granularity, aVer"’lg.]e\galidation of migration strategies will directly benefityan
across each time epoch) for the usual resource metricg, . re study that focuses on overload estimation

such as CPU utilization, paging, network traffic (in bound Before introducing the general framework of our mi-

anl(lj out bounlt(j), eft;:. Jhe monitoring ds':\‘f;l" trll\lus, dﬁels nOtljration algorithm, we formalize some notations. Assuming
collect network traffic between any two s. Nonetheless, o c1oud environment in Section lll, the hosting of VMs

we derive the uneven traffic rate matrix from the aggregatior?S represented by a mapping functién: [1 Nyp] —

of outgoing and incoming rates by: [1,...,Npm]. () = h means that VM: is located on
TP physical machiné. Machineh located on rack is noted by
0, ifi=yj;
7. =41 0O I (4) §(h) = r. We useu!_, to refer to the number of processors
Y = fi#], used by VMi hosted by machiné monitored at timet
Q> Ok >y Ik :

It is important to note that, in this paper, we only consider
where O; and I; are the aggregate outgoing and incomingtwo types of resources: CPU and network. The former
rates of V. M;, and @ is a normalization scalar for making is used to capture resource requirementthin a single
E(Ti;) = 1 as we assumed in global traffic model in VM. The latter is used to capture resource requirements
Equation 3. across VMs. Our approach can be easily generalized to

Figure 2 (c) shows the traffic rate matrix derived from other resources (namely, memory and disk). To maintain
Figures 2 (a) and (b). The sum of matrix by columnssimplicity, we chose to omit them from our discussion.
and by rows approximates the aggregation of outgoing and Given the above assumption, Algorithm 1 captures the
incoming rate. We see several VM pairs communicate ingeneric approach to overload mitigation through VM migra-
high rates as shown in red color. tion. On each machine, the total utilization of its hosted$/M

When evaluating the impact on network consumption, was monitored. If the placed VMs use more resources than
will use the traffic rateT defined by either Equation 3 their physical capacity, the corresponding host machirle wi
or Equation 4, and communication coét defined by be tagged as being overloaded. Without loss of generalgy, w



Algorithm 1: VM migration through online monitoring Algorithm 2: LVF migration algorithm

Input : Utilization online monitoredu®_,,, Function Naive — migration(OwverList, 0, 6, ut_,, P)
_ wherei = 1...Nym andh = 1...Npm; for eachh, € OverList do
Capacny of physical maching; 1.U=[ul_, |,k € {klo(k) = ho}
Assignment of VMs9 : [1, ..., Nym] — [1, ..., Npm]; °
Location of hosts on racks 20=P-3U
0:[1, ..., Npm] = [1, .., Nrgerl]; 3.for h =1 to Np, do
t
Initialization: L 4. Free(h) = P =3k 000=h We—n
0, randomly assign a equivalent number of VMs to 5. M= {}
each physical machine; U
8, define rack location of VMs according the position 6. while (O <0) & (U #0) do i
of their host machine: 7. k* = closest(—O, U, 'greater’)
OwverList = {}; 8.if k* =0 then
Observing over-commitment and Migrating VMs: | 9.k = closest(—0, U, 'smaller)
while ¢ > 1 do 10. H = {h|5(h) = 6(ho), uls _n, < Free(h
e % N do H = {hl6(h) = 8(ho). uh- _n, < Frec(h)}
it ul_-, > P then 11.if H =0 then
all k,0(k)=h Yk—> _ ¢
L report machinex has over-commitment problem; L 12. H ; {hlujs —p, < Free(h)}
o . . 13.if H # 0 then
i OverList = OverList U h; 14. h* — argmax(Free(hs, € H))
if OverList# @ then hto
Migrating VMs by 15. M = MU (K", h")
Naive — migration(OverList, 0,6, ut_,,, P); 16. Free(h*) = Free(h*) — uf«_p,
or by 17.0 =0 + upw_p,
. . . t .
L Scattered — migration(OverList,0,6,u;_,, P); 18.U = U\“Z*fho

19.if |M| > 2 then
20. X = exchange(h,, 0, ut_})

assume that all physical machines have the same capacity. 2&' ';fz\ﬂg'}e”

Overloaded hosts in th@ver List will be processed by the - :
- . . - . 23.else ifO < 0 then

core migration algorithm (LVF or Scattered, described i th 24. X — exchange(h,, 0, u'_,,0, Free, M)

following sections). ' A ’

. . . . . L 25 M =MUX
The ultimate goal of migration is clearly to mitigate 26. for each(k*,h*) € M do
the overload problem. Mitigation can be achieved in two | 27.6(k*) = h*
manners: (i) move one or more VMs from an overloaded -
machine to relatively under-loaded machines; (ii) exchang

ing one VM at an overloaded machine with a VM at another

machine. As expected, to minimize the impact on runningz anq 4 check the free capacity of all machines. Migration
applications, the number of moves and exchanges should bgyirs will be saved in set/, which is initialized to be empty

minimized. at Step 5. The algorithm continues to search for VMs to
move and their corresponding destination hosts until free
capacityO is positive or all VMs are moved out.

The most natural chqice to mitigating overload is to Finding the Best VM to Migrate. At Step 7, the candidate
move overloaded VMs with the largest amount of resourcg,\; 1o move is first selected by functiotlosest, described

_reql_Ji_rem_ents. We _caII thisargest VM First (LVF). The in Algorithm 3. The selected VM:* has the closest utiliza-
intuition is that moving the Iarg_erVMs \_N'” reduce the num- 4o yajye that islarger than —O. This selection criterion
ber of ne_.\e_ded migrations. This technique broadly captureg g rog that moving out* immediately turnsO positive
many existing techniques [1], [2]. The pseudo-code of LV, the new total utilization contributed by rest VMs is the

migration algorithm is shown in Algorithm 2. We use LVF closest one to capacit§. In other words, after moving out

as a baseline for comparison against our proposed techniquker, machineh, will be safe and its resources are used to
It also serves as the basis for our enhanc8dafteredl

. the greatest extent possible.
algorithm. If Step 7 fails (when no VM has larger utilization than
Counting Free Capacity. At Step 1, we collectU as a —0), Step 9 chooses VM* that has the closest utilization
vector representing the utilization of all VMs hosted at thevalue butsmallerthan —O. When all VM utilizations are
overloaded host,. O is then computed as the amount of smaller than—0, in this casefk* has the largest utilization
free capacity at,. It is obviously negative at the start. Steps at h,,.

B. Largest VM First Migration Algorithm



Algorithm 3: Function ofclosest Algorithm 4: Function ofexchange

Function k = closest(O, U, 'para’) Function X = exchange(h,,0,ul_,, 0, Free, M)
Find an element iflJ who has the closest value @ Find two VMs at different hosts to exchange
L.if para is greaterthen 1. if number of input arguments = then
L 2. k = argmin(U(1)[U(t) > O) 2.U = [ub_p, ],k € {k|O(k) = ho}
3. else if para is smallerthen 3.0=P-3U
L 4. k = argmax(U(t)|U(t) < O) 4.for h =1t0 Npm do
t L 5. Free(h) = P — Zallk,@(k):h ub_ 5
6. M ={}
7. else
L 8.U= [uz,ho], k¢ M

Finding the Target Host to Accept Migrated VM. Once a
VM k* is selected to be moved, its new hastis decided 9. Best =0

in Steps 10 to 144* is the host with largest free capacity, 107 = {Ald(h) = 8(ho),0 < Free(h)}
not only than utilization ofc*, but also than all other non-  11.if # =0 then

overloaded hosts. The candidate of new host is firstly sought L 121 = {th|0 < Free(h)}

among hosts in the same rack fas (§(k) = 6(h,)). If no 13.for eachuy_,, € U do

host is available inside the rack, candidates are searched i 14.for eachhi, € H do
other racks. A pair ofk*, h*) is then added to migration set 15. Ugo = [uf_p,, |, k € {k|0(k) = hio}
M. The free capacity and utilization vector are then updated 16. k* = closest(O + uj,_j,, Uto, 'smaller’)
at Steps 16 to 18. 17.0™" = O +uf_p, — Upr _p,,

new __ t t
When to Exchange VMs. There is a scenario where too 18. F”eto - Free(hi,) + Uk*—hto — Uk—h,
many VMs have to be moved becausghas a large enough 19.if (Freeis" > 0) & (O™ > Best) then
VM that cannot be accepted by any host. It can occur at Step L 20. X = (k, hio) U (K", ho)
12, whereH is empty because utilization of candiddté 21. Best = O™"

is not less than any free capacity of non-overloaded hosts.
Therefore, many VMs with small utilization are moved out
for making O positive. In order to keep the number of
migrations small, hosh, can exchange this VM:* with suggested movedJ defined at Steps 2 or 8 is a vector of
a VM locating at another host. utilization of candidate VMs for exchange.

Another scenario is that overload cannot be mitigated For each VM included iflJ, we search the most suitable

by going through Steps 6 to 18. Free capacityremains VM to exchange from all non-overloaded hogfs Hosts in
negative after moving out 1 or 2 VMs. The remaining VMs the same rack a#,, checked at Step 10, have a higher
at h, cannot be moved out because their utilization is soPriority than the others. At an non-overloaded hast,
large that no host can accept them. Exchanging VMs captep 15 gives the utilization vector of its hosted VMs. The
solve the problem by moving one of the VMs fraiy to h closest function is used to find VMk* at h,, to exchange
and taking one VM fronmh to h,. with VM k£ at h,. k* is the best VM ath;, to fit h, if

In Algorithm 2, we check the first scenario at Step 19k is moved out, because it has the closest utilization value

by seeing if the number of migration pairs is more than abut smaller tharO + ug_p,,» Which is the free capacity of
threshold, which is set to 2 because one exchange involvds after moving out VM£. Steps 17 and 18 update free
two VM moves. Functiorexchange (Algorithm 4) is then ~ capacity ofh, andh;, whenk andk™ are exchanged. i,
used to find the most appropriate pair of VMs to exchangetan hostk (Freej; > 0) and h, reaches the largest free

If the returned exchange saf is not empty, the migration Capacity so far @™ > Best), exchanged seX is set to

set is changed to b& and moving pairs suggested before WO pairs of migration(k, fu,) and (k*, h,) at Step 20.

are dismissed. The second scenario is checked at Step 23.Finally, when exchange setis determined, LVF updates the
Functionexchange is used with three more parameters for YM assignment) at Step 25 of Algorithm 2 by checking

finding VMs to exchange in addition to the moving et each migration pair inV/. In the worst case, when all VMs
have to be migrated, the complexity of LVF @3(N,,).

Exchanging VMs. Functionexchange can find exchange o )

candidates either among all VMs on overloaded hast C- Scattered Migration Algorithm

(Step 1 to 6), or among the remaining VMs &g after The Scattered migration algorithm differs from the LVF
moving (Step 7 to 8). The latter take3, Free and M  algorithm on how to decide VMs and hosts to migrate.
from function arguments with values after moving, while Intuitively, VMs with strong utilization correlation shéi
the former recompute®, Free and M regardless of the be scattered onto different machines for reducing the risk o



future overload. The measure of correlation between VMs Algorithm 5: Scattered migration algorithm

is based on their utilization during a predefined time period Fynction Scattered — migration(OverList, 6, u'_,, P)

(e.g., one day). At Step 1 of Algorithm 5, we collddy,, an
utilization vector for each VVE on an overloaded hoét,
sincet —w until now. {U} will be further used to compute
correlation coefficients and variances of VMs. Variabile
Free and M are the same as those in LVF algorithm.
Steps 6 to 8 find candidate s&tfor moving out from host
h,. K is the intersection oR andV, whereR contains VMs
having strong correlation with each other/at andV is a
set of VMs whose utilization has large variance during time
w. VMs in K are significantly correlated and have unstable
utilization They are the source of overload and, therefore,
should be scattered across hosts whose VMs they are less
correlated with.
Steps 11 to 19 seek the destination of each VMHn
to move. Hosts on the same rack as are preferred,
considering that correlated VMs may have high traffic rate
and should locate closely. Firstly on each non-overloaded
hosth, we compute the number of VMs that are significantly
correlated to the candidate in K at Step 15. The best
destination to movek is h* who has a small value on
both the number of correlated VM#V( %)) and the number
of hosting VMs ({k|6(k) = h}|), and large free capacity
(Free(h)). M, Free andO are then updated accordingly.
The rest of Scattered algorithm is the same as that of LVF
algorithm. Exchanges are investigated and finally assigihme
is updated. In the worst case, when all VMs have to be
migrated, the complexity of Scattered@¥ N2, ) caused by
the searching of strongly correlated VMs.

V. EVALUATION

The dataset we used is from an enterprise data center
that hosts thousands of VMs. Due to significant overheads
and security concerns, we collected processor utilization
of 48 VMs during 9 days from July 6th to 14th, 2011.
Each VM, as we observed, was configured with 17 logical
processors (which excludes any over-commitments). The

for eachh, € OverList do

1. U = [Ug), k € {k|0(k) = ho},
whereUy, = [u; 5" w542, uf_y,
andw is the length of a sliding window
2.0=P—-3%, Uy
3.for h =1 to Npy, do
L 4. Free(h) = P =3 p.00)=n Uk—h
5. M ={}
6. Find R, a set of VMs onh, having strong correlations
with each other, by checking correlations {0 }
7. FindV, a set of VMs onh, having larger variance
than the otheR/3 VMs, by checking variances ofU }
8. K=RnNV
9.if K =0 then
| 10. K = {k|0(k) = ho}
11.for eachk € K do
12. H = {h|é(h) = §(ho),0 < Free(h)}
13.if H = () then
L 14. H = {h|0 < Free(h)}

15. N(h) = number of VMs (at host € H)
significantly correlated to VMg
N(h) x |H|
s Free(h)
17.M = M U (k,h™)
18. Free(h*) = Free(h*) — uj,_p,
19.0 =0 +uj_y,
20.if |M| > 2 then
21. X = exchange(h,, 0, ut_})
22.if X # 0 then
L 23 M=X
24 else ifO < 0 then
25. X = exchange(h,,0,u}_,,0, Free, M)
26 M =MUX

27. for each(k*,h") € M do
| 28.0(k*) = h*

]T

16. h* = argmin

average processor utilization of each VM was recorded
at a 15-mins granularity. We treat the utilization of each

VM as a chronologically ordered time series. As describedlifferent machines, or across different racks. To achieve a
earlier, although only processor utilization is considere fair consideration of traffic costs, we place equal number

for migration in this paper, our approach can be easilyof machines on every rack. For example, whEp,; = 6

generalized to consider memory and disk utilization.

every rack is placed 3 machines, and whgp,, = 3, all

To test the risk of overload with or without VM migration, machines are on one rack.

we place 48 VMs onNpy, = 3,4,6 physical machines  To simulate the over-commitment, we vary the number
on 2 racks. As we assume that the network architecturgf resources on each physical machine. For simplicity, we
is a VL2 model shown in Figure 1, having any additional assume every physical machine has the same number of
racks will not impact the results. What is important is processors. Given that VM requirements are fixed, different
correctly simulating all assumed costs, namely the coshwheover-commitment ratios are achieved by varying the number
2 VMs are on the same machine, on the same rack buf processors at each physical machine from 18 to 90. The
lower number of resources a machines has, the higher over-
commitment ratio and risk of overload the system will have.
Since the initial assignment of VMs to physical machines

1l ogical processors are the hyper-threading processois aufrall the
processors within a server. Tipgocessormentioned hereinafter refers to
logical processor
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Figure 3. The number of occurred overloads &by, = 6 physical Figure 4. The number of migration happened &), = 6 physical
machines hosting 48 VMs during 9 days. machines hosting 48 VMs during 9 days.

is unknown and can affect future migrations, we tested théions as one of the key evaluation parameters specifically
algorithms on 200 random initial assignments and report thelue to the impracticality of modeling the wide-spectrum
average performance along with standard deviation. of migration overheads, which depends on the types of
We compare the performance of Scattered against twaenigration (e.g., pre-copy vs. post copy, type of storage, an
alternatives: LVF migration and no migration. We use foursize of VMs). In general, using the number of migrations
criteria to evaluate the efficacy of all approaches: (1) theas a normalizing metric allows us to focus on how to
number of overloads, (2) the number of migrations (movesnaximally pack the underlying infrastructure while redugi
+ exchanges), (3) the amount of overloads, and (4) thé¢he need for migrations. Minimizing such metric will dirgct
impact on communication cost. We note that for spaceminimize the amount of added traffic (due to migration),
considerations, all figures show the evaluation resultsnwheand will minimize any service disruption irrespective oéth
migration is operated ol p,; = 6 physical machines across underlying Service Level of Agreement (SLA).
2 racks. WhenNpy, = 4 at 2 racks andVpy; = 3 at 1 Figure 4 shows that migration depends on physical ma-
rack, the number and the amount of overload, the nhumbechine capacity. When machines have sufficient resources for
of migrations and the impact on traffic cost are similar theall VMs (e.g., more than 40 processors), overload is so rare
broader case aNp,; = 6. that the number of migrations is close to 0. When capacity

Number of Overloads. Figure 3 shows the number of is not large (around 35 to 40 processors), a small number

overloads on 6 physical machines at 2 racks hosting 4§f migrations (less than 10) can allow VMs be hosted under

VMs during 9 days. Each rack includes three machinesh'gh over-commit ratios. A large number of migrations are

Given the same physical machine capacity, we counted thté|ggered when each physmal_ .mach|ne has less than. 25
occurrences of overload when using no migration, LVF, andrOCcessors. Under such _c_ondmons, S_cattgred substgntial
Scattered. Both, the mean of 200 independent runs and err8ptperforms LVF by requiring fewer migrations.
bars (whose height is 2*standard-deviation) are plotted. Amount of Overload. Besides the number of overloads,
As we expected, the number of overloads decreases wheme are also interested in the amount of overload that shows
each physical machine has larger capacity. In the scenaritow many extra processors should be added to each physical
of no migration, overload can occur even when physicamachine to satisfy all VM resource requirements. Figure 5
machines have more than 60 processors as the standazdmpares the amount of overload when given different
deviation (height of error bar in Figure 3) is larger thancapacity. We see that no migration causes larger amount
0. Migration (using either LVF or Scattered) significantly of overload than using migration, and LVF requires more
reduces the number of overload (around 70% reduction) bytrocessors than Scattered.

also the risk of overload (very small variance). When ead]mpact on Communication Cost. As discussed in Sec-
physical machine has more than 40 processors, the numbﬁ{)n lll, we usethe sum of traffic rate perceived by each

Of. ove.rload occurrences trgnds towgrds 0. In other Wordsswitch as object value for evaluating the traffic cost. In
migration allows that 6 physical machines host 48 VMs W|ththe no migration case, the object valseis defined by

highest over-commit ratig.d. Equation 1 once VMs are randomly assigned to physical
Number of Migrations. Figure 4 shows the number of machines. When migration is considered, the traffic rate
VM migration (moves + exchanges) when using LVF and7 among VMs is stable, but their communication cost

Scattered for migration. We used the number of VM migra-will be changed if some VMs are moved from one machine
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Figure 6. The increase of traffic rate caused by LVF and Sealkte
migration when comparing with random placement.

to another. Therefore, the object val§echanges with the
migration process. We expect that the value will not inceeas
dramatically because of migration.

In order to evaluate the impact of migration on VM traffic,

we use random VMs placement as the baseline. When a{ ]

time ¢ physical machine’M; is hostingn; VMSs, the object
value S; of traffic cost can be computed by Equation 1. For
a fair comparisonp; out of total N,,,, VMs are randomly
placed on machinéM; and object values’ is computed.
The difference betwees; and S’ shows the increase of
traffic cost at time due to migration. The average difference
for all ¢ is used to evaluate the influence of migration on
traffic cost. Figure 6 shows the averaged increase on obje
value S given different physical machine capacities. Both
LVF and Scattered migration have 0 increase $munder
the global traffic model, which means that migration will not

affect VMs communication. When traffic model has uneven
traffic rates, LVF and Scattered migration reduces traffic

2]

traffic cost. What is most important is the Scattered aclsieve

cost. In other words, migration process can help minimiz

significantly larger improvements than LVF and allows for
higher over-commit ratios.

oy

VI. CONCLUSION

This paper studied both the benefits and risks in over-
committing VM resources in cloud environments. Clearly,
over-commitment provides economical incentives to cloud
providers. This, however, is at the risk of reduced qualfty o
service (hamely, providers may induce overload on hosted
VMs). We designed an algorithm, Scattered, that balances
VM resource utilization and reduces the overall risk of
overload across the entire cloud data center. Evaluation
results demonstrate the efficacy of our approach across
a wide array of configuration scenarios. In particular, we
believe that our migration approach is particularly atixac
because it minimizes the number of needed migrations,
thus minimally impacting running applications. Additidiya
our approach also balances long-term communication cost
between running VMs. Our current work only monitors
processor utilization of VMs. We are considering memory
and disk utilization in our future VM migration algorithms.
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