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Abstract—While early emphasis of Infrastructure as a Ser-
vice (IaaS) clouds was on providing resource elasticity to end
users, providers are increasingly interested inover-committing
their resources to maximize the utilization and returns of their
capital investments. In principle, over-committing resources
hedges that users—on average—only need a small portion of
their leased resources. When such hedge fails (i.e., resource de-
mand far exceeds available physical capacity), providers must
mitigate this provider-induced overload, typically by migrating
virtual machines (VMs) to underutilized physical machines.
Recent works on VM placement and migration assume the
availability of target physical machines [1], [2]. However, in
an over-committed cloud data center, this is not the case. VM
migration can even trigger cascading overloads if performed
haphazardly. In this paper, we design a new VM migration
algorithm (called Scattered) that minimizes VM migrations
in over-committed data centers. Compared to a traditional
implementation, our algorithm can balance host utilization
across all time epochs. Using real-world data traces from
an enterprise cloud, we show that our migration algorithm
reduces the risk of overload, minimizes the number of needed
migrations, and has minimal impact on communication cost
between VMs.

I. I NTRODUCTION

Infrastructure as a Service (IaaS) is changing how comput-
ing resources are being managed, delivered, and consumed.
Cloud providers are able to benefit from economies of scale
by pooling large amounts of computing resources and run-
ning the underlying infrastructure at higher utilization levels
than traditional—non-cloud—data centers. Providers also
have the opportunity to over-commit their resources, relying
on natural fluctuations—peaks and valleys—in computing
demands across individual users.

Over-commitment of resources is not a new concept. It is
widely used in the airline industry, for example, to maximize
seat utilization in departing flights. An airline can sell a
number of extra tickets for any particular flight, hedging
that—on average—a greater number of passengers miss their
flight. On (supposedly) rare occasions, this hedge can fail;
in such case, the airline must shift some passengers to
different flights. Similarly, over-commitment in IaaS clouds
allows providers to sell more resources than they actually
have. A physical machine with 8 CPUs, for example, can
be sold to 16 users, each being offered 1 CPU per virtual
machine (VM). In such case, the physical machine has an
over-commit ratio of 2. The provider is then hedging that—

on average—each user only needs half of the requested
resources.

While a high over-commit ratio increases the average
utilization of the underlying resources, it also increasesthe
risk of provider-inducedoverload. This type of overload
occurs when (over-committed) users demand enough of
their resources such that—in combination—they exhaust all
available physical capacity. In the example above, if two
users demand 100% of their leased CPU resource, while the
rest remain exactly at 50%, then some users will not get their
fair share. Depending on the scheduling policy, some users
(possibly all) will experience provider-induced overload. In
the case of memory, provider-induced overload can trigger
dramatic drop in application performance [3]. In general,
this problem can be solved by migrating certain VMs on
the overloaded machine to other—relatively under-loaded—
machines. The difficulty arises when the entire data center
is over-committed. Deciding on which VMs to move and
where to move them is important because migration should
mitigate the overload without raising the risk of further
overloads on the destination machines. It should also avoid
negatively impacting the underlying network.

In this paper, we introduceScattered, an online migration
algorithm that targets over-committed cloud environments.
The distinguishing characteristics of our algorithm include
(1) accounts for over-committed resources across all physical
machines, (2) identifies target VMs for migration based on
the degree of correlation in their workloads, (3) considers
exchanging (or swapping) of VMs across physical machines
to achieve its targets, and (4) accounts for network topology
to minimize the impact of migration on VM communication
cost. Using extensive simulations based on real workload
traces from a production cloud environment, we show that
our algorithm is able to (1) maximize the number of over-
committed VMs, while using fewer resources, (2) reduce the
risk of cascading overloads, and (3) minimize the impact on
the communication cost among VMs.

The remainder of this paper is organized as follows.
Section II surveys related work. Section III introduces the
data center and network model used for capturing the impact
of migration on VM communication. Section IV describes
our proposed migration algorithm, Scattered. Section V eval-
uates the efficacy of Scattered. Finally, Section VI concludes
and gives our perspectives on future research.
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II. RELATED WORK

VM migration has been widely studied in recent years [1],
[4], [5], [6], [2]. Sandpiper[1], a VM migration system,
introduced two algorithms: one for deciding when to migrate
and the other for determining what and where to migrate.
It uses a greedy heuristic to move VMs from the most
overloaded host to the least-overloaded host. Shrivastavaet
al. focused on minimizing network traffic while considered
both inter-VM dependencies and the underlying network
topology when making migration decisions [2].Entropy [7]
proposed an approach to migrate tasks within a cluster
based on constraint programming. In [4], the authors outline
a scheme for distributing resources among VMs on the
same physical server. They consider the relative priorities of
different VMs and their inter-dependencies while allocating
resources to them. Zhao and Figueiredo estimated migration
costs based on the configurations and running states of
the migrated VMs; they used their estimates for preparing
resource reservation [8]. The work in [9] considers the load
on the communication paths that connect servers to shared
network storage. Woodet al. used live migration in addition
to a sharing-aware VM placement system for optimizing VM
placement as workloads change [10]. None of these works
considers the combined effects of VM migration in highly
over-committed environments.

III. C LOUD DATA CENTER MODEL

We consider a relatively standard data center architecture
(Figure 1) that consists of a series of connected racks. Within
a single rack, all physical machines are connected to a top-
of-rack switch. While there are numerous ways to connect
racks together, we assume that the data center uses VL2
architecture [11] or one of its derivatives. Briefly, VL2 is a
3-tier architecture that usesValiant Load Balancingto spread
traffic uniformly across network paths. This architecture
provides close to fixed communication cost across all racks.

From a migration perspective, this architecture has a
significant influence on the performance of deployed appli-
cations. An application typically consists of multiple com-
municating VMs (e.g., three-tier Web application, Hadoop,
ERP). The pairwise traffic rates between VMs vary across
applications, workloads, time-of-day, etc. Clearly, placing
VM pairs with heavy communication on host machines with
low network cost can increase network scalability and reduce
traffic latency. The consumption of network resources has
been considered as one optimization objective when placing
VMs [12], [2]. In this paper, we build on their model to
derive a more suitable migration strategy in highly over-
committed environments.

Estimating network consumption involves two compo-
nents. One is the communication cost, which depends on
the underlying network architecture within a data center. The
other is the traffic rate between any VM pair. For example,
whenV Mx is moved from hostA to hostB, the traffic rate

Figure 1. General architecture of cloud data centers.

betweenV Mx and other VMs will not change. However,
the communication cost betweenV Mx and other VMs on
hostA will probably increase, while the communication cost
betweenV Mx and VMs on hostB will decrease.

In order to evaluate whether the migration of VMs will
raise consumption of network resources, we use a criterion
for measuringthe aggregate traffic rates perceived by every
switchas introduced by Meng et al. in [12]. It is defined by

S =
∑

i

∑

j

TijCij , (1)

whereTij is the traffic rate fromV Mi to V Mj, andCij is
the communication cost betweenV Mi to V Mj .

The communication cost matrix can be analytically ex-
pressed according to the network architecture. Basically,
VMs located on the same physical machine have lower
communication cost than the ones on different machines.
We define the resulting communication cost matrix as:

Cij =

8

>

>

>

<

>

>

>

:

0, if i = j;

1, if i and j are hosted by the same machine;

3, if i and j are hosted by the same rack (switch);

7, if i and j are hosted by different racks.
(2)

The traffic rate matrix expresses how often VMs com-
municate with each other. We use two traffic models for
characterizing different VMs communication modes,global
traffic model and partitioned traffic model. Global traffic
model assumes that VMs communicate with each other at a
constant rate, following a Gaussian distribution given as:

Tij =

(

0, if i = j;

r ∼ N(µ, σ2), if i 6= j.
(3)

In this paper, we setµ = 1, andσ2 = 0.25.
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Figure 2. Traffic rate matrix (c) generated by partitioned traffic model
based on aggregation outgoing rate (a) and incoming rate (b).

The partitioned traffic model allows uneven traffic rates
among VMs. From our observation of a real-world enterprise
cloud data center, some VMs can have much higher outgoing
or incoming traffic volume than other. For example, Fig-
ures 2 (a) and (b) show the outgoing and incoming aggregate
traffic rates from 48 randomly selected VMs, respectively.
VM 33 has outgoing and incoming traffic rate more than
400 MBytes/min, which is much higher than the others.

Our monitoring infrastructure (which is typical of most
data centers) collect information on individual VMs. It
collects measurements (at a 15-min granularity, averaged
across each time epoch) for the usual resource metrics,
such as CPU utilization, paging, network traffic (in bound
and out bound), etc. The monitoring data, thus, does not
collect network traffic between any two VMs. Nonetheless,
we derive the uneven traffic rate matrix from the aggregation
of outgoing and incoming rates by:

Tij =







0, if i = j;
1

Q

Oi Ij
∑

k Ok

∑

k Ik

, if i 6= j,
(4)

whereOi and Ii are the aggregate outgoing and incoming
rates ofV Mi, andQ is a normalization scalar for making
E(Tij) = 1 as we assumed in global traffic model in
Equation 3.

Figure 2 (c) shows the traffic rate matrix derived from
Figures 2 (a) and (b). The sum of matrix by columns
and by rows approximates the aggregation of outgoing and
incoming rate. We see several VM pairs communicate in
high rates as shown in red color.

When evaluating the impact on network consumption, we
will use the traffic rateT defined by either Equation 3
or Equation 4, and communication costC defined by

Equation 2 to compute the observation valueS given in
Equation 1. ValueS computed during the migration process
that causes changes onC will be compared with baseline
S obtained withC that is defined based on random VM
placement.

IV. CONSTRAINED VM M IGRATION

In this section, we first describe a general framework for
VM migration. We then introduce Scattered, a new algorithm
for virtual machine migration when physical resources are
over-committed.

A. General Framework for Migration

When resources of a physical machine are aggressively
over-committed, all hosted VMs are under a higher risk
for experiencing provider-induced overload. As mentioned
earlier, provider-induced overload occurs when a VM re-
quires more resources than what it needs, but less resources
than what it leased. Ideally, an effective cloud resource
management system should have the following abilities:

1) Estimates the risk of overload;
2) Identifies the best VM(s) to migrate;
3) Identifies the most appropriate target physical machine

to migrate to;
4) Minimizes the impact on the underlying infrastructure

(e.g., minimize the number of migrations).

In this paper, we focus on the last three abilities and
investigate how provider-induced overload (due to over-
commitment) can be effectively mitigated in a highly-
constrained environments. While we do not directly study
the first ability (in the list above), we believe that successful
validation of migration strategies will directly benefit any
future study that focuses on overload estimation.

Before introducing the general framework of our mi-
gration algorithm, we formalize some notations. Assuming
the cloud environment in Section III, the hosting of VMs
is represented by a mapping functionθ : [1, ..., Nvm] →
[1, ..., Npm]. θ(i) = h means that VMi is located on
physical machineh. Machineh located on rackr is noted by
δ(h) = r. We useut

i−h to refer to the number of processors
used by VMi hosted by machineh monitored at timet.

It is important to note that, in this paper, we only consider
two types of resources: CPU and network. The former
is used to capture resource requirementswithin a single
VM. The latter is used to capture resource requirements
across VMs. Our approach can be easily generalized to
other resources (namely, memory and disk). To maintain
simplicity, we chose to omit them from our discussion.

Given the above assumption, Algorithm 1 captures the
generic approach to overload mitigation through VM migra-
tion. On each machine, the total utilization of its hosted VMs
is monitored. If the placed VMs use more resources than
their physical capacity, the corresponding host machine will
be tagged as being overloaded. Without loss of generality, we



Algorithm 1: VM migration through online monitoring

Input : Utilization online monitoredut
i−h,

wherei = 1...Nvm andh = 1...Npm ;
Capacity of physical machineP ;
Assignment of VMsθ : [1, ..., Nvm] → [1, ..., Npm];
Location of hosts on racks

δ : [1, ..., Npm] → [1, ..., Nrack];

Initialization:
θ, randomly assign a equivalent number of VMs to

each physical machine;
δ, define rack location of VMs according the position

of their host machine;
OverList = {};

Observing over-commitment and Migrating VMs:
while t > 1 do

for h = 1 to Npm do
if

P

all k,θ(k)=h
ut

k−>h > P then
report machineh has over-commitment problem;

OverList = OverList ∪ h;

if OverList 6= ∅ then
Migrating VMs by
Naive− migration(OverList, θ, δ, ut

i−h, P );

or by
Scattered −migration(OverList, θ, δ, ut

i−h, P );

assume that all physical machines have the same capacity.
Overloaded hosts in theOverList will be processed by the
core migration algorithm (LVF or Scattered, described in the
following sections).

The ultimate goal of migration is clearly to mitigate
the overload problem. Mitigation can be achieved in two
manners: (i) move one or more VMs from an overloaded
machine to relatively under-loaded machines; (ii) exchang-
ing one VM at an overloaded machine with a VM at another
machine. As expected, to minimize the impact on running
applications, the number of moves and exchanges should be
minimized.

B. Largest VM First Migration Algorithm

The most natural choice to mitigating overload is to
move overloaded VMs with the largest amount of resource
requirements. We call thisLargest VM First (LVF). The
intuition is that moving the larger VMs will reduce the num-
ber of needed migrations. This technique broadly captures
many existing techniques [1], [2]. The pseudo-code of LVF
migration algorithm is shown in Algorithm 2. We use LVF
as a baseline for comparison against our proposed technique.
It also serves as the basis for our enhanced (Scattered)
algorithm.

Counting Free Capacity. At Step 1, we collectU as a
vector representing the utilization of all VMs hosted at the
overloaded hostho. O is then computed as the amount of
free capacity atho. It is obviously negative at the start. Steps

Algorithm 2: LVF migration algorithm

Function Naive− migration(OverList, θ, δ, ut
i−h, P )

for eachho ∈ OverList do
1. U = [ut

k−ho
], k ∈ {k|θ(k) = ho}

2. O = P −
P

U

3. for h = 1 to Npm do
4. Free(h) = P −

P

all k,θ(k)=h
ut

k−h

5. M = {}

6. while (O < 0) & (U 6= ∅) do
7. k∗ = closest(−O, U, ’greater’)

8. if k∗ = ∅ then
9. k∗ = closest(−O,U, ’smaller’)

10. H = {h|δ(h) = δ(ho), u
t
k∗−ho

< Free(h)}

11. if H = ∅ then
12. H = {h|ut

k∗−ho
< Free(h)}

13. if H 6= ∅ then
14. h∗ = argmax

hto

(Free(hto ∈ H))

15. M = M ∪ (k∗, h∗)

16. Free(h∗) = Free(h∗) − ut
k∗−ho

17. O = O + ut
k∗−ho

18. U = U\ut
k∗−ho

19. if |M | > 2 then
20. X = exchange(ho, θ, ut

i−h)

21. if X 6= ∅ then
22. M = X

23. else if O < 0 then
24. X = exchange(ho, θ, ut

i−h, O, Free,M)

25. M = M ∪ X
26. for each(k∗, h∗) ∈ M do

27. θ(k∗) = h∗

3 and 4 check the free capacity of all machines. Migration
pairs will be saved in setM , which is initialized to be empty
at Step 5. The algorithm continues to search for VMs to
move and their corresponding destination hosts until free
capacityO is positive or all VMs are moved out.

Finding the Best VM to Migrate. At Step 7, the candidate
VM to move is first selected by functionclosest, described
in Algorithm 3. The selected VMk∗ has the closest utiliza-
tion value that islarger than−O. This selection criterion
ensures that moving outk∗ immediately turnsO positive
and the new total utilization contributed by rest VMs is the
closest one to capacityP . In other words, after moving out
k∗, machineho will be safe and its resources are used to
the greatest extent possible.

If Step 7 fails (when no VM has larger utilization than
−O), Step 9 chooses VMk∗ that has the closest utilization
value butsmaller than−O. When all VM utilizations are
smaller than−O, in this case,k∗ has the largest utilization
at ho.



Algorithm 3: Function ofclosest

Function k = closest(O, U, ’para’)

Find an element inU who has the closest value toO
1. if para is greaterthen

2. k = argmin
t

(U(t)|U(t) > O)

3. else if para is smallerthen
4. k = argmax

t

(U(t)|U(t) < O)

Finding the Target Host to Accept Migrated VM. Once a
VM k∗ is selected to be moved, its new hosth∗ is decided
in Steps 10 to 14.h∗ is the host with largest free capacity,
not only than utilization ofk∗, but also than all other non-
overloaded hosts. The candidate of new host is firstly sought
among hosts in the same rack asho (δ(h) = δ(ho)). If no
host is available inside the rack, candidates are searched in
other racks. A pair of(k∗, h∗) is then added to migration set
M . The free capacity and utilization vector are then updated
at Steps 16 to 18.

When to Exchange VMs. There is a scenario where too
many VMs have to be moved becauseho has a large enough
VM that cannot be accepted by any host. It can occur at Step
12, whereH is empty because utilization of candidatek∗

is not less than any free capacity of non-overloaded hosts.
Therefore, many VMs with small utilization are moved out
for making O positive. In order to keep the number of
migrations small, hostho can exchange this VMk∗ with
a VM locating at another host.

Another scenario is that overload cannot be mitigated
by going through Steps 6 to 18. Free capacityO remains
negative after moving out 1 or 2 VMs. The remaining VMs
at ho cannot be moved out because their utilization is so
large that no host can accept them. Exchanging VMs can
solve the problem by moving one of the VMs fromho to h

and taking one VM fromh to ho.
In Algorithm 2, we check the first scenario at Step 19

by seeing if the number of migration pairs is more than a
threshold, which is set to 2 because one exchange involves
two VM moves. Functionexchange (Algorithm 4) is then
used to find the most appropriate pair of VMs to exchange.
If the returned exchange setX is not empty, the migration
set is changed to beX and moving pairs suggested before
are dismissed. The second scenario is checked at Step 23.
Functionexchange is used with three more parameters for
finding VMs to exchange in addition to the moving setM .

Exchanging VMs. Functionexchange can find exchange
candidates either among all VMs on overloaded hostho

(Step 1 to 6), or among the remaining VMs onho after
moving (Step 7 to 8). The latter takesO, Free and M

from function arguments with values after moving, while
the former recomputesO, Free and M regardless of the

Algorithm 4: Function ofexchange

Function X = exchange(ho, θ, ut
i−h, O, Free,M)

Find two VMs at different hosts to exchange
1. if number of input arguments = 3then

2. U = [ut
k−ho

], k ∈ {k|θ(k) = ho}

3. O = P −
P

U

4. for h = 1 to Npm do
5. Free(h) = P −

P

all k,θ(k)=h
ut

k−h

6. M = {}

7. else
8. U = [ut

k−ho
], k /∈ M

9. Best = 0

10. H = {h|δ(h) = δ(ho), 0 < Free(h)}

11. if H = ∅ then
12. H = {h|0 < Free(h)}

13. for eachut
k−ho

∈ U do
14. for eachhto ∈ H do

15. Uto = [ut
k−hto

], k ∈ {k|θ(k) = hto}

16. k∗ = closest(O + ut
k−ho

,Uto, ’smaller’)

17. Onew = O + ut
k−ho

− ut
k∗−hto

18. Freenew
to = Free(hto) + ut

k∗−hto
− ut

k−ho

19. if (Freenew
to > 0) & (Onew > Best) then

20. X = (k, hto) ∪ (k∗, ho)

21. Best = Onew

suggested moves.U defined at Steps 2 or 8 is a vector of
utilization of candidate VMs for exchange.

For each VM included inU, we search the most suitable
VM to exchange from all non-overloaded hostsH . Hosts in
the same rack asho, checked at Step 10, have a higher
priority than the others. At an non-overloaded hosthto,
Step 15 gives the utilization vector of its hosted VMs. The
closest function is used to find VMk∗ at hto to exchange
with VM k at ho. k∗ is the best VM athto to fit ho if
k is moved out, because it has the closest utilization value
but smaller thanO + ut

k−ho
, which is the free capacity of

ho after moving out VMk. Steps 17 and 18 update free
capacity ofho andhto whenk andk∗ are exchanged. Ifhto

can hostk (Freenew
to > 0) and ho reaches the largest free

capacity so far (Onew > Best), exchanged setX is set to
two pairs of migration(k, hto) and(k∗, ho) at Step 20.

Finally, when exchange set is determined, LVF updates the
VM assignmentθ at Step 25 of Algorithm 2 by checking
each migration pair inM . In the worst case, when all VMs
have to be migrated, the complexity of LVF isO(Nvm).

C. Scattered Migration Algorithm

The Scattered migration algorithm differs from the LVF
algorithm on how to decide VMs and hosts to migrate.
Intuitively, VMs with strong utilization correlation should
be scattered onto different machines for reducing the risk of



future overload. The measure of correlation between VMs
is based on their utilization during a predefined time period
(e.g., one day). At Step 1 of Algorithm 5, we collectUk, an
utilization vector for each VMk on an overloaded hostho

sincet−w until now.{Uk} will be further used to compute
correlation coefficients and variances of VMs. VariableO,
Free andM are the same as those in LVF algorithm.

Steps 6 to 8 find candidate setK for moving out from host
ho. K is the intersection ofR andV , whereR contains VMs
having strong correlation with each other atho, andV is a
set of VMs whose utilization has large variance during time
w. VMs in K are significantly correlated and have unstable
utilization They are the source of overload and, therefore,
should be scattered across hosts whose VMs they are less
correlated with.

Steps 11 to 19 seek the destination of each VM inK

to move. Hosts on the same rack asho are preferred,
considering that correlated VMs may have high traffic rate
and should locate closely. Firstly on each non-overloaded
hosth, we compute the number of VMs that are significantly
correlated to the candidatek in K at Step 15. The best
destination to movek is h∗ who has a small value on
both the number of correlated VMs (N(h)) and the number
of hosting VMs (|{k|θ(k) = h}|), and large free capacity
(Free(h)). M , Free andO are then updated accordingly.

The rest of Scattered algorithm is the same as that of LVF
algorithm. Exchanges are investigated and finally assignment
is updated. In the worst case, when all VMs have to be
migrated, the complexity of Scattered isO(N2

vm) caused by
the searching of strongly correlated VMs.

V. EVALUATION

The dataset we used is from an enterprise data center
that hosts thousands of VMs. Due to significant overheads
and security concerns, we collected processor utilization
of 48 VMs during 9 days from July 6th to 14th, 2011.
Each VM, as we observed, was configured with 17 logical
processors1 (which excludes any over-commitments). The
average processor utilization of each VM was recorded
at a 15-mins granularity. We treat the utilization of each
VM as a chronologically ordered time series. As described
earlier, although only processor utilization is considered
for migration in this paper, our approach can be easily
generalized to consider memory and disk utilization.

To test the risk of overload with or without VM migration,
we place 48 VMs onNPM = 3, 4, 6 physical machines
on 2 racks. As we assume that the network architecture
is a VL2 model shown in Figure 1, having any additional
racks will not impact the results. What is important is
correctly simulating all assumed costs, namely the cost when
2 VMs are on the same machine, on the same rack but

1Logical processors are the hyper-threading processor cores of all the
processors within a server. Theprocessormentioned hereinafter refers to
logical processor.

Algorithm 5: Scattered migration algorithm

Function Scattered −migration(OverList, θ, ut
i−h, P )

for eachho ∈ OverList do
1. U = [Uk], k ∈ {k|θ(k) = ho},

whereUk = [ut−w+1
k−ho

, ut−w+2
k−ho

, ..., ut
k−ho

]T

andw is the length of a sliding window

2. O = P −
P

k
Utk

3. for h = 1 to Npm do
4. Free(h) = P −

P

all k,θ(k)=h
ut

k−h

5. M = {}

6. FindR, a set of VMs onho having strong correlations
with each other, by checking correlations of{Uk}

7. FindV , a set of VMs onho having larger variance
than the other2/3 VMs, by checking variances of{Uk}

8. K = R ∩ V

9. if K = ∅ then
10. K = {k|θ(k) = ho}

11. for eachk ∈ K do
12. H = {h|δ(h) = δ(ho), 0 < Free(h)}

13. if H = ∅ then
14. H = {h|0 < Free(h)}

15. N(h) = number of VMs (at hosth ∈ H)
significantly correlated to VMk

16. h∗ = argmin
h

N(h) × |H |
Free(h)

17. M = M ∪ (k, h∗)

18. Free(h∗) = Free(h∗) − ut
k−ho

19. O = O + ut
k−ho

20. if |M | > 2 then
21. X = exchange(ho, θ, ut

i−h)

22. if X 6= ∅ then
23. M = X

24. else if O < 0 then
25. X = exchange(ho, θ, ut

i−h, O, Free,M)

26. M = M ∪ X
27. for each(k∗, h∗) ∈ M do

28. θ(k∗) = h∗

different machines, or across different racks. To achieve a
fair consideration of traffic costs, we place equal number
of machines on every rack. For example, whenNPM = 6
every rack is placed 3 machines, and whenNPM = 3, all
machines are on one rack.

To simulate the over-commitment, we vary the number
of resources on each physical machine. For simplicity, we
assume every physical machine has the same number of
processors. Given that VM requirements are fixed, different
over-commitment ratios are achieved by varying the number
of processors at each physical machine from 18 to 90. The
lower number of resources a machines has, the higher over-
commitment ratio and risk of overload the system will have.
Since the initial assignment of VMs to physical machines
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Figure 3. The number of occurred overloads onNPM = 6 physical
machines hosting 48 VMs during 9 days.

is unknown and can affect future migrations, we tested the
algorithms on 200 random initial assignments and report the
average performance along with standard deviation.

We compare the performance of Scattered against two
alternatives: LVF migration and no migration. We use four
criteria to evaluate the efficacy of all approaches: (1) the
number of overloads, (2) the number of migrations (moves
+ exchanges), (3) the amount of overloads, and (4) the
impact on communication cost. We note that for space
considerations, all figures show the evaluation results when
migration is operated onNPM = 6 physical machines across
2 racks. WhenNPM = 4 at 2 racks andNPM = 3 at 1
rack, the number and the amount of overload, the number
of migrations and the impact on traffic cost are similar the
broader case ofNPM = 6.

Number of Overloads. Figure 3 shows the number of
overloads on 6 physical machines at 2 racks hosting 48
VMs during 9 days. Each rack includes three machines.
Given the same physical machine capacity, we counted the
occurrences of overload when using no migration, LVF, and
Scattered. Both, the mean of 200 independent runs and error
bars (whose height is 2*standard-deviation) are plotted.

As we expected, the number of overloads decreases when
each physical machine has larger capacity. In the scenario
of no migration, overload can occur even when physical
machines have more than 60 processors as the standard
deviation (height of error bar in Figure 3) is larger than
0. Migration (using either LVF or Scattered) significantly
reduces the number of overload (around 70% reduction) but
also the risk of overload (very small variance). When each
physical machine has more than 40 processors, the number
of overload occurrences trends towards 0. In other words,
migration allows that 6 physical machines host 48 VMs with
highest over-commit ratio3.4.

Number of Migrations. Figure 4 shows the number of
VM migration (moves + exchanges) when using LVF and
Scattered for migration. We used the number of VM migra-
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Figure 4. The number of migration happened onNPM = 6 physical
machines hosting 48 VMs during 9 days.

tions as one of the key evaluation parameters specifically
due to the impracticality of modeling the wide-spectrum
of migration overheads, which depends on the types of
migration (e.g., pre-copy vs. post copy, type of storage, and
size of VMs). In general, using the number of migrations
as a normalizing metric allows us to focus on how to
maximally pack the underlying infrastructure while reducing
the need for migrations. Minimizing such metric will directly
minimize the amount of added traffic (due to migration),
and will minimize any service disruption irrespective of the
underlying Service Level of Agreement (SLA).

Figure 4 shows that migration depends on physical ma-
chine capacity. When machines have sufficient resources for
all VMs (e.g., more than 40 processors), overload is so rare
that the number of migrations is close to 0. When capacity
is not large (around 35 to 40 processors), a small number
of migrations (less than 10) can allow VMs be hosted under
high over-commit ratios. A large number of migrations are
triggered when each physical machine has less than 25
processors. Under such conditions, Scattered substantially
outperforms LVF by requiring fewer migrations.

Amount of Overload. Besides the number of overloads,
we are also interested in the amount of overload that shows
how many extra processors should be added to each physical
machine to satisfy all VM resource requirements. Figure 5
compares the amount of overload when given different
capacity. We see that no migration causes larger amount
of overload than using migration, and LVF requires more
processors than Scattered.

Impact on Communication Cost. As discussed in Sec-
tion III, we use the sum of traffic rate perceived by each
switch as object value for evaluating the traffic cost. In
the no migration case, the object valueS is defined by
Equation 1 once VMs are randomly assigned to physical
machines. When migration is considered, the traffic rate
T among VMs is stable, but their communication costC

will be changed if some VMs are moved from one machine
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Figure 5. The amount of overload onNPM = 6 physical machines
hosting 48 VMs during 9 days.
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Figure 6. The increase of traffic rate caused by LVF and Scattered
migration when comparing with random placement.

to another. Therefore, the object valueS changes with the
migration process. We expect that the value will not increase
dramatically because of migration.

In order to evaluate the impact of migration on VM traffic,
we use random VMs placement as the baseline. When at
time t physical machinePMi is hostingni VMs, the object
valueSt of traffic cost can be computed by Equation 1. For
a fair comparison,ni out of totalNvm VMs are randomly
placed on machinePMi and object valueS′ is computed.
The difference betweenSt and S′ shows the increase of
traffic cost at timet due to migration. The average difference
for all t is used to evaluate the influence of migration on
traffic cost. Figure 6 shows the averaged increase on object
value S given different physical machine capacities. Both
LVF and Scattered migration have 0 increase onS under
the global traffic model, which means that migration will not
affect VMs communication. When traffic model has uneven
traffic rates, LVF and Scattered migration reduces traffic
cost. In other words, migration process can help minimize
traffic cost. What is most important is the Scattered achieves
significantly larger improvements than LVF and allows for
higher over-commit ratios.

VI. CONCLUSION

This paper studied both the benefits and risks in over-
committing VM resources in cloud environments. Clearly,
over-commitment provides economical incentives to cloud
providers. This, however, is at the risk of reduced quality of
service (namely, providers may induce overload on hosted
VMs). We designed an algorithm, Scattered, that balances
VM resource utilization and reduces the overall risk of
overload across the entire cloud data center. Evaluation
results demonstrate the efficacy of our approach across
a wide array of configuration scenarios. In particular, we
believe that our migration approach is particularly attractive
because it minimizes the number of needed migrations,
thus minimally impacting running applications. Additionally,
our approach also balances long-term communication cost
between running VMs. Our current work only monitors
processor utilization of VMs. We are considering memory
and disk utilization in our future VM migration algorithms.
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