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Abstract
With the intense competition between cloud providers, oversub-
scription is increasingly important to maintain profitability. Over-
subscribing physical resources is not without consequences: it in-
creases the likelihood of overload. Memory overload is particu-
larly damaging. Contrary to traditional views, we analyze current
data center logs and realistic Web workloads to show that over-
load is largely transient: up to 88.1% of overloads last for less
than 2 minutes. Regarding overload as a continuum that includes
both transient and sustained overloads of various durations points
us to consider mitigation approaches also as a continuum, com-
plete with tradeoffs with respect to application performance and
data center overhead. In particular, heavyweight techniques, like
VM migration, are better suited to sustained overloads, whereas
lightweight approaches, like network memory, are better suited to
transient overloads. We present Overdriver, a system that adap-
tively takes advantage of these tradeoffs, mitigating all overloads
within 8% of well-provisioned performance. Furthermore, under
reasonable oversubscription ratios, where transient overload con-
stitutes the vast majority of overloads, Overdriver requires 15% of
the excess space and generates a factor of four less network traffic
than a migration-only approach.

Categories and Subject Descriptors D4.2 Operating Systems
[Storage Management]: Main Memory

General Terms Performance, Design, Experimentation, Manage-
ment

Keywords Cloud Computing, Virtualization, Resource Oversub-
cription, VM Migration, Network Memory

1. Introduction
Cloud computing is becoming increasingly competitive, with a
growing list of large companies including Amazon, Microsoft,
Google, and IBM, all investing in massive data centers [14]. Physi-
cal resources in these data centers are leased on an as-needed basis
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in the form of virtual machines. With this trend, effective usage
of data center resources is becoming increasingly important. A
cloud provider using the classical model of overprovisioning each
VM with enough physical resources to support relatively rare peak
load conditions will have trouble competing with one that can pro-
vide similar service guarantees using less resources. This suggests
an opportunity for cloud providers to oversubscribe data center
resources, placing multiple VMs on the same physical machine,
while betting that the aggregate VM resource demands at any one
point in time will not exceed the capacity of the physical machine.
Unfortunately, without complete knowledge of all future VM re-
source usage, one or more VMs will likely experience overload.
As oversubscription becomes increasingly popular, overload will
become increasingly prevalent. The ability to manage overload is
therefore a critical component of a next-generation, competitive
cloud service.

While overload can happen with respect to any resource on a
physical machine, we focus on memory overload. The availability
of physical memory contributes to limits on VM density and con-
solidation and as such, is an attractive resource for oversubscrip-
tion. In addition, recent pricing data for different configurations in
Amazon’s Elastic Compute Cloud (EC2) indicate that memory is
twice as expensive as EC2 Compute Units.1 However, memory is
typically not oversubscribed in practice as much as other resources,
like CPU, because memory overload is particularly devastating to
application performance. Memory overload can be characterized
by one or more VMs swapping its memory pages out to disk, re-
sulting in severely degraded performance. Whereas overload on the
CPU or disk result in the hardware operating at full speed with
contention introducing some performance loss, memory overload
includes large overheads, sometimes to the point of thrashing, in
which no progress can be made. Unless a next-generation, over-
subscribed cloud can manage memory overload, memory will be a
bottleneck that limits the VM density that can be achieved.

Since the ability to manage overload is and will become increas-
ingly critical, and overload of memory is particularly dangerous,
we ask the question: Can performance degradation due to memory
overload under real workloads be effectively managed, reduced, or
eliminated?

1 We use Amazon’s pricing data as input parameters for a series of linear
equations of the form pm × mi + pc × ci + ps × si = pricei, where
mi, ci, si, and pricei are pricing data for configuration i for memory, EC2
Compute Units, storage, and hourly cost, respectively. Also, pm, pc, and
ps are the unknown unit cost of memory, EC2 Compute Units, and storage,
respectively. Approximate solutions for the above equations consistently
show that memory is twice as expensive as EC2 Compute Units. Particu-
larly, the average hourly unit cost for memory is 0.019 cents/GB. This is in
contrast with an average hourly unit cost of 0.008 cents/EC2 Compute Unit
and 0.0002 cents/GB of storage.
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In order to answer this question, it is essential to understand
and characterize the types of memory overload a next-generation
cloud provider should expect to mitigate. As we have mentioned,
the cloud provider must address overload caused by oversubscrip-
tion. Through analysis of data center logs from well-provisioned
enterprise data centers, we conclude that there is ample opportu-
nity for memory oversubscription to be employed: only 28% of
machines experience any overload whatsoever, an average of 1.76
servers experience overload at the same time, and 71% of overloads
last at most only long enough for one measurement period. Exper-
imenting with higher degrees of oversubscription on a Web server
under a realistic client load, we find, while the likelihood of over-
load can increase to 16% for a reasonably oversubscribed VM, the
duration of overload varies. While overload occasionally consists
of long, sustained periods of thrashing to the disk, this is not the
common case: 88.1% of overloads are less than 2 minutes long.
The fact that memory overload in an oversubscribed environment
is a continuum, rather than entirely sustained or transient, suggests
that different types of overload may be best addressed with a dif-
ferent mitigation strategy/technique.

Any overload mitigation strategy will have an effect on applica-
tion performance and will introduce some overhead on the data cen-
ter itself. Existing migration-based strategies [3, 15, 28, 34] address
memory overload by reconfiguring the VM to physical machine
mapping such that every VM has adequate memory and no VMs
are overloaded. VM migration is a heavyweight process, best suited
to handle predictable or sustained overloads. The overload contin-
uum points to a class of transient overloads that are not covered by
migration. Instead, we propose a new application of network mem-
ory [1, 2, 7, 8, 13, 19, 24] to manage overload, called cooperative
swap. Cooperative swap sends swap pages from overloaded VMs to
memory servers across the network. Unlike migration, cooperative
swap is a lightweight process, best suited to handle unpredictable
or transient overloads. Each technique carries different costs, and
addresses a different section of the overload continuum, but neither
technique can manage all types of overload.

We present Overdriver, a system that adaptively chooses be-
tween VM migration and cooperative swap to manage a full con-
tinuum of sustained and transient overloads. Overdriver uses a
threshold-based mechanism that actively monitors the duration of
overload in order to decide when to initiate VM migration. The
thresholds are adjusted based on VM-specific probability overload
profiles, which Overdriver learns dynamically. Overdriver’s adapta-
tion reduces potential application performance degradation, while
ensuring the chance of unnecessary migration operations remains
low.

For the mitigation techniques to work, excess space is required
somewhere in the data center, whether it is as a target for migration
or a page repository for cooperative swap. Overdriver aggregates
the VM-specific probability overload profiles over a large number
of VMs in order to provide insight into the amount and distribution
of excess space in the data center. We have implemented Overdriver
and evaluated it when compared to either technique on its own to
show that Overdriver successfully takes advantage of the overload
continuum, mitigating all overloads within 8% of well-provisioned
performance. Furthermore, under reasonable oversubscription ra-
tios, where transient overload constitutes the vast majority of over-
loads, Overdriver requires 15% of the excess space and generates a
factor of four less network traffic than a migration-only approach.

To summarize, we make three main contributions:

• We observe the overload continuum: memory overloads en-
countered in a data center are, and will likely continue to in-
clude both transient and sustained bursts, although an over-
whelming majority will be transient.

• We show there are tradeoffs between memory overload mitiga-
tion strategies that are impacted by the overload continuum, and
propose a new application of network memory, called coopera-
tive swap, to address transient overloads.

• We design, implement and evaluate Overdriver, a system that
adapts to handle the entire memory overload continuum.

The rest of the paper is organized as follows. Section 2 examines
the characteristics of overload to conclude that overload is and will
likely continue to be overwhelmingly transient. Section 3 describes
the tradeoffs between mitigation techniques under different types of
memory overload. Section 4 describes the design and implementa-
tion of Overdriver and how it adaptively mitigates the damage of
all types of memory overload. Section 5 quantifies Overdriver’s ef-
fects on the application and the data center, comparing it to systems
that do not adapt to the tradeoffs caused by the overload continuum.
Finally, related work is presented in Section 6, and Section 7 con-
cludes the paper.

2. The Overload Continuum
In this section we make three observations. First, we describe vari-
ous causes of overload in an oversubscribed data center, with partic-
ular focus on overload due to oversubscription. Second, we justify
the claim that an opportunity for memory oversubscription exists
in today’s data centers through analysis of data center logs from
a large enterprise. Finally, we experimentally examine the charac-
teristics of overload caused by oversubscription to conclude that
overload is a continuum, with transient overloads being dominant.

2.1 Types of Overload

A VM is overloaded if the amount of physical memory allocated
to the VM is insufficient to support the working set of the applica-
tion component within the VM. In a cloud infrastructure that over-
subscribes memory, overload can be caused by the cloud user or
the cloud provider. The former occurs when the cloud user does
not rent an instance configured with enough memory to handle its
working set, or if a running application component has a memory
leak. In this paper, we assume that the user should purchase a larger
instance to eliminate this type of overload, which is in line with
most (if not all) providers’ policies.

We thus focus on mitigating overload caused by the cloud
provider. We call the amount of memory that a cloud provider
dedicates to a cloud user’s VM the memory allocation. If the VM’s
memory allocation is less than requested, then we say the physical
machine hosting the VM is oversubscribed. Oversubscribing mem-
ory while preserving performance is possible because application
components running in VMs do not require a constant amount of
memory, but experience application-specific fluctuations in mem-
ory needs (e.g. change in working set). In practice, memory over-
subscription can be accomplished by taking machine memory away
from one VM to give to another through memory ballooning [31],
transparent page sharing [31], or other techniques [10]. If the aggre-
gate memory demand of VMs sharing a physical machine exceed
the amount of physical memory on the machine, it is the cloud
provider’s responsibility to manage overload such that a cloud user
believes it has the amount of memory it requested.

2.2 Opportunities for Oversubscription

To justify the opportunity for memory oversubscription in today’s
data centers, we examine log data from a number of production
enterprise data centers, which tend to be well-provisioned. The
log data covers a number of performance metrics (including CPU,
memory, and disk usage) for a large data center that hosts diverse
applications, including Web, financial, accounting, CRM, etc. The
collected performance data is typically used by the various data
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Figure 1. Count of simultaneously overloaded servers out of 100
randomly selected servers over a single representative day. Each
point represents the number of overloaded servers during the cor-
responding 15 min. interval.
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Figure 2. Memory overload distribution of 100 randomly selected
servers over a single representative day.

centers to trend application resource usage to identify resource
contention and assess the need for workload rebalancing.

There are generally two indicators used by the data center to
identify if a server is having memory overload problems: page
scan rate and paging rate. Paging rate is the primary indicator as
it captures the operating system’s success in finding free pages. In
addition, a high rate of page scans provides an early indicator that
memory utilization is becoming a bottleneck.

In well-provisioned data centers, overload is unpredictable, rel-
atively rare, uncorrelated, and transient, indicating that an oppor-
tunity exists for memory oversubscription in today’s data centers.
To support this claim, we processed performance logs from 100
randomly selected servers. Each log is 24 hours long, while each
point in the trace is the average paging rate over a fifteen-minute
interval. This is the finest granularity of the log data; thus, sub-
fifteen-minute information is not available to us without additional
instrumentation of the servers. To capture transient overload bursts
that may appear as very low paging rates when averaged over the
entire fifteen minute interval, we define overload as an interval with
a non-zero paging rate.

We analyzed the data in three different ways. First, we looked
at the prevalence of overload (irrespective of its duration) across
the 100 servers. We observed that overload is rare: only 28 of the
servers experience some kind of memory overload. Second, we
studied the frequency of simultaneous overload. Figure 1 shows
a time series plot of the count of overloaded servers over the
24-hour measurement period. The figure shows that at most 10
servers were simultaneously overloaded. However, the average over
the 24-hour period is 1.76 servers, suggesting that servers sharing
physical machines are unlikely to experience correlated overload.
Finally, we studied the duration of the overload. Figure 2 shows

the distribution of the duration of memory overload (using both
metrics—page rate and scan rate). By definition, the figure only
looks at the servers that experienced overload in one or more
15-minute intervals. The figure shows that 71% were overloaded
for one interval, 80% (71% + 9%) up to two intervals, 92.5%
(71% + 9% + 12.5%) up to 3 intervals (15 min, 30 min, 45 min
respectively).

2.3 Overload Due to Oversubscription

If a cloud provider indeed takes advantage of memory oversub-
scription, we must understand the characteristics of overload as
oversubscription is increased. We would like to analyze real data
center logs again, however, we do not have access to traces from a
data center that currently employs memory oversubscription.

Instead, we introduce a realistic application and workload in an
environment within which we can experiment with different levels
of oversubscription and gather fine-grained data at both application
and system level. We use the SPECweb20092 banking benchmark
to run on a LAMP3 Web sever to provide a realistic client load.
SPECweb2009 models each client with an on-off period [33], clas-
sified by bursts of activity and long stretches of inactivity. Each
client accesses each Web page with a given probability, determined
from analyzing trace data from a bank in Texas spanning a period
of 2 weeks including 13+ million requests [29]. SPECweb2009 is
intended to test server performance with a fixed client load, so, by
default, client load is stable: whenever one client exits, another en-
ters the system. This makes the benchmark act like a closed loop
system. Real systems rarely experience a static number of clients,
so, in order to better approximate real workloads, we use a Poisson
process for client arrivals and departures. We choose Poisson pro-
cesses for the clients as a conservative model; real systems would
likely have more unpredictable (and transient) spikes.

We next examine the effect of oversubscription on the duration
of overload. To do so, we varied the VM’s memory allocation to
simulate oversubscription and ran the SPECweb2009 Web server
with Poisson processes for client arrivals and departure set so that
the arrival rate is 80% of the service rate. Each experiment lasted
for 10 minutes. Our measurement granularity within an experiment
was set at 10 seconds. To ensure high confidence, each point in the
graph is the average of 75 experiments.

From this experiment, we construct a probability profile for the
application VM under the different memory allocations. As ex-
pected, Figure 3(a) shows an increase in the probability of over-
load as memory becomes constrained. However, in addition to the
frequency of overload, we are also interested in the prevalence of
each overload duration. Figure 3(b) shows a Cumulative Distribu-
tion Function (CDF) of the duration of overload. We see that even
at high memory oversubscription ratios, most overload is transient:
88.1% of overloads are less than 2 minutes long, and 30.6% of over-
loads are 10 seconds or less for an allocation of 512 MB. If the VM
memory is increased to 640 MB, 96.9% of overloads are less than
2 minutes long, and 58.9% of overloads are 10 seconds.

To conclude, we have confirmed that memory overload in-
creases with memory oversubscription. In addition, overload is
not solely sustained or transient, but covers a spectrum of dura-
tions. Finally, we have found that even at the high oversubscription
levels that we expect to see in tomorrow’s data centers, transient
overloads dominate, which will be important to consider when de-
signing Overdriver.

2 http://www.spec.org/web2009/
3 Linux, Apache, MySQL, PHP
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Figure 3. These two graphs form a memory overload probability profile for the web server component of the SPECweb2009 banking
application under a variety of different oversubscription levels, including both the frequency and duration of overload.

3. Overload Mitigation
When considering an overload mitigation strategy, the cost of the
strategy can be measured in two dimensions: the effect to the
application that is experiencing overload and the effect to the data
center caused by overhead intrinsic to the strategy.

Application effects refer to the performance of the application
that is experiencing overload. Ideally, a mitigation strategy would
sustain application response time, throughput, or other performance
metrics throughout the overload, so that the cloud user is unaware
that it even took place. Data center effects include the overhead or
contention introduced by the overload and the mitigation strategy.
Ideally, the resources used during the overload are no more than
what would have been actively used if no oversubscription was in
effect. In this section, we discuss the application and data center
effects of two different mitigation techniques: VM migration and
network memory.

3.1 Migration

Existing techniques to mitigate overload consist largely of VM mi-
gration techniques that address overload by reconfiguring the VM
to physical machine mapping such that every VM has adequate
memory and no VMs are overloaded [3, 15, 28, 34] (i.e. the VM
memory allocation is increased, possibly up to the amount origi-
nally requested by the cloud user). VM migration is a relatively
heavyweight solution: it incurs delays before it goes into effect,
and has a high, fixed impact to the data center, regardless of the
transience of the overload. For these reasons, migration strategies
are usually designed to be proactive. Trending resource utilization,
predicting overload, and placement strategies to minimize future
overloads are key components of a migration strategy. Despite these
challenges, VM migration strategies are popular because once mi-
grations complete and hotspots are eliminated, all application com-
ponents will have adequate memory to return to the performance
they would have enjoyed without oversubscription.

While live migration boasts very low downtime, as low as
60ms for the migrating VM [5], in the best case, the time-until-
completion of migration is dependent on the speed at which the
entire memory footprint of the migrating VM can be sent over the
network. In many settings, further migration delays are likely to
arise from the complexity of migration decisions. In addition to
computing VM placements for resource allocation, migration deci-
sions may require analysis of new and old network patterns, hard-
ware compatibility lists, licensing constraints, security policies and
zoning issues in the data center. Even worse, a single application
in a data center is typically made up of an elaborate VM deploy-
ment architecture, containing load balancers, worker replicas, and
database backends, that may experience correlated load spikes.

[27] A migration decision, in such case, has to consider the whole
application ecosystem, rather than individual VMs. This complex-
ity can be reason enough to require sign off by a human operator.
Finally, in the worst case, the infrastructure required for efficient
VM migration may not be available, including a shared storage in-
frastructure, such as a SAN, and a networking infrastructure that is
migration aware.

The effect that a migration strategy has on the data center is
mostly measured in terms of network impact. Typically, VM mi-
gration involves sending the entire memory footprint of the VM
or more in the case of live migration. This cost is fixed, regard-
less of the characteristics of the overload that may be occurring4.
A fixed cost is not necessarily a bad thing, especially when consid-
ering long, sustained overloads, in which the fixed cost acts as an
upper bound to the data center overhead. Migration also requires a
high, fixed amount of resources to be available at the target phys-
ical machine. The target must have enough resources to support a
full VM, including CPU and enough memory to support the desired
allocation for the migrating VM.

Coupled with the unbeatable performance of local memory
available to a VM after a migration strategy completes, the fixed
cost to the data center makes migration an attractive strategy to
handle both predictable load increases, as well as sustained over-
loads.

3.2 Network Memory

Two important results from Section 2 highlight a gap in the solu-
tion space that existing migration-based solutions do not address.
First, overload follows unpredictable patterns. This indicates that,
unless oversubscription policies are extremely conservative, reac-
tive strategies are necessary. Second, transient overload is, and will
likely continue to be, the most common type of overload. As de-
scribed above, migration, when used reactively, has high delays,
and high network overhead due to relatively short lived transient
overloads. There is an opportunity to consider reactive strategies
that focus on transient overloads.

Network memory is known to perform much faster than disk [1,
2, 7, 8, 13, 19, 24], especially on fast data center networks, and
has been applied to nearly every level of a system. We propose co-
operative swap, an application of network memory as an overload
mitigation solution in which VM swap pages are written to and
read from page repositories across the network to supplement the

4 Live VM migration will send more than the few hundred megabytes to tens
of gigabytes of data comprising the VM’s memory footprint because it must
re-transmit the written working set in iterations. However, the network cost
of live migration strategies is still relatively fixed because live migration
strategies impose a limit on the number of iterations.
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Tput (MB/s) Latency (μs)
Read Write Read Write

Network Mem 118 43.3 119± 51 25.45± .04
Local Disk 54.56 4.66 451± 95 24.85± .05

Table 1. Network memory vs local disk performance.

memory allocation of an overloaded VM. Cooperative swap is en-
tirely reactive, and begins to mitigate overload when the very first
swap page is written out by the overloaded VM5. Its impact on the
network is dependent on the duration of overload. However, using
cooperative swap does not match the performance of local memory
over the long term.

Table 1 shows the relative throughput of disk I/O vs. network
memory. These numbers were computed from running a disk dump
between the system (/dev/zero or /dev/null) and a hard disk
(/dev/sda1) versus a Linux network block device (/dev/nbd0)
attached to a ramdisk across the network. The network connect-
ing physical machines is 1 Gbps so can sustain a maximum rate
of 125 MB/s. Both are block devices and so should be affected by
Linux equally in terms of overhead6. Each result is the average of
20 runs of writing or reading 1 GB for the throughput test and one
4 KB page for the latency test. In our setup, network memory is sig-
nificantly faster than disk. Using cooperative swap, short bursts of
paging complete faster, allowing it to maintain application perfor-
mance through transient bursts of overload. However, cooperative
swap does not restore local memory and so cannot restore applica-
tion performance to where a cloud user would expect if oversub-
scription was not taking place.

Cooperative swap affects the data center by spewing memory
pages across the network. The amount of memory pages read or
written from the network is dependent on the length of the over-
load. This means that cooperative swap is relatively cheap in terms
of network overhead for transient overloads, but could generate un-
bounded amounts of network traffic for very sustained overloads.
The amount of pages that must be available from the remote page
repositories is also dependent on the duration of overload, however,
this number is bounded by the size of the VM’s originally requested
memory size.

Reactivity, proportional network overhead to overload duration,
and long-term performance issues make cooperative swap an at-
tractive solution for unpredictable overloads and transient over-
loads, filling the gap in the solution space left by existing migration
strategies.

4. Overdriver
As seen in Section 3, the overload continuum leads to tradeoffs be-
tween mitigation strategies. We design a system, called Overdriver
to manage overload while being aware of these tradeoffs, adaptively
deciding to use cooperative swap for transient overloads and migra-
tion for sustained overloads.

Figure 4 shows the high level components in Overdriver. Each
physical machine is running a hypervisor and supporting some
number of guest VMs. It also runs an Overdriver agent in its con-
trol domain (Domain 0), that monitors the memory overload be-
havior of the local guest VMs in terms of paging rate. Within the
Overdriver agent, the workload profiler locally learns a memory

5 We do not use cooperative swap unless the VM has a reduced memory
allocation due to oversubscription. Otherwise, overload is the responsibility
of the cloud user.
6 Care was taken to eliminate caching effects as much as possible for the
latency tests, dropping the caches and writing 500 MB to the device between
each latency test.

Figure 4. The memory resources in the data center are split into
space for VMs and excess space to mitigate overload, of which
there are two types: cooperative swap page repositories, and fu-
ture migration targets. Resource allocation and placement of all re-
sources is performed by the control plane.

overload probability profile for each VM similar to that in Fig-
ure 3, which it then uses to set adaptive thresholds on the length
at which the overload is classified as sustained. Using these thresh-
olds, the overload controller decides which mitigation strategy to
employ for a given overload. A transient overload, defined as an
overload whose duration has not yet passed the threshold, is mit-
igated by redirecting the overloaded VM’s swap pages to cooper-
ative swap page repositories, rather than to the local disk. If the
transient overload becomes sustained, characterized when the du-
ration of the overload exceeds the threshold, the overload controller
initiates a migration operation, wherein one or more VMs on the
physical machine, are migrated to perform an increase of the mem-
ory allocation of the overloaded VM.

For either mitigation strategy to be useful, there must be some
excess space in the data center. The excess space manager on each
physical machine is responsible for dedicating some of the local ex-
cess space to act as a target for migration, and some to act as a page
repository for cooperative swap from overloaded VMs throughout
the data center. The actual allocation and placement of VMs and
excess space, including page repositories, throughout the data cen-
ter is performed by the control plane, which is similar to the one
in [34]. The control plane may run a proactive migration algorithm
to avoid hotspots [34] or to consolidate VMs [15], however its de-
sign is out of the scope of this paper.

4.1 Deciding to Migrate

As described above, Overdriver uses a threshold on the duration of
overload to determine when to classify an overload as sustained and
employ migration. Choosing an appropriate threshold is difficult,
and a good choice depends on the overload characteristics of the
application VM. At one extreme, a very low threshold approaches a
solely migration-based overload mitigation strategy, with good ap-
plication performance, but high data center cost. On the other hand,
setting the threshold to be too large approaches a network memory-
based strategy, with lower application performance but also lower
data center cost. Intuitively, a good choice for the threshold would
be high enough that a vast majority of the overloads do not require
migration while being low enough that performance does not suffer
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too much. A profile of the application VMs, including the probabil-
ities of each duration of overload, can help determine a reasonable
value for the threshold.

In reality, an application VM profile that describes the probabil-
ity of overload having a particular duration is not available. How-
ever, rather than selecting a single threshold for all VMs, the over-
load manager starts with a fixed threshold, then relies on the work-
load profiler to learn the probabilities of various duration overloads
to give a basis for reducing the threshold.

There are two challenges in learning a probability profile. First,
in the case of sustained overload where migration is employed, the
overloaded VM will be granted additional resources that will fun-
damentally change its overload behavior. In particular, the prob-
ability profile of the application VM will change, requiring the
learning process to start anew. Second, the learned probability pro-
file takes some time to converge. For example, we attempted to
learn the probability profile for a VM allocated 640 MB from the
SPECweb2009 experiments in Section 2. For this scenario, at least
25 sustained overloads must be witnessed before the learned profile
becomes reasonable. Since the local profile is useless after a migra-
tion takes place, the 25 sustained overloads must be endured using
only cooperative swap in order to learn a complete profile.

Despite these challenges, focusing only on the different dura-
tions of transient overloads, the workload profiler learns enough to
reduce the threshold without resorting to excessive migration. The
workload profiler maintains a list of buckets for each VM, corre-
sponding to possible transient overload durations. As the paging
rates of a VM are monitored, the profiler maintains a count for the
number of times an overload of a specified duration is encountered
in the appropriate bucket. Once the number of measurements ex-
ceeds a base amount, we begin to estimate a tighter bound on the
migration threshold by computing the distance from the mean in
which transient overload is unlikely to occur. For example, as a
heuristic, we assume the distribution of transient overloads is nor-
mal, then compute μ+3σ to be a new threshold. If the new thresh-
old is lower than the original threshold, we adopt the tighter bound
to reduce the time until migration is triggered for sustained over-
load.

4.2 Capacity Planning

Despite the limitations of the learned probability profiles, they
can be sent to the control plane, where they can be aggregated
over a large number of VMs over time. This can give insight into
the quantity of excess space in the data center needed to handle
overload and how to partition it between space for migration and
space for cooperative swap. The control plane, in return, informs
each excess space manager how to subdivide its resources.

To demonstrate how the probability profiles inform the subdivi-
sion of excess space, consider a VM running the webserver com-
ponent of the SPECweb2009 application described in Section 2,
when allocated only 640 MB of memory. According to its proba-
bility profile (Figure 3) this application VM has a 16% chance of
experiencing overload where 96% of the overloads are less than
1 minute in duration. In order for migration to handle sustained
overload, we assume that there must be enough excess capacity to
have room to migrate a full VM. Similarly, in order for cooperative
swap to handle transient overload, we conservatively assume that
the sum of the overloaded VM’s current memory allocation and the
excess space that is required for cooperative swap is equal to the
non-oversubscribed allocation, regardless of how short the burst is.
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Figure 5. Overdriver allows more VMs to be supported by balanc-
ing the amount of excess space needed for sustained and transient
overloads.

Assuming the overload characteristics of all VMs are indepen-
dent7, if p is the probability of the most likely VM to have overload,
we can compute a bound on the probability that at most k VMs will
experience simultaneous overload:

P {# overloaded VMs ≤ k} =
k∑

i=0

(
n

i

)
· pi · (1− p)n−i,

where n is the number of VMs in the data center. For example,
consider an oversubscribed data center supporting 150 VMs, all
running the SPECweb2009 configuration described above. Even if
each VM is allocated 640 MB, rather than the 1024 MB they would
have requested, we would expect—with probability 0.97—that no
more than 3 VMs experience simultaneous sustained overload and
no more than 31 VMs experience simultaneous transient overload.
This, along with our assumptions about how much excess space
is required to satisfy a single overload of either type, allows us
to compute—with high probability—the amount of each type of
excess space needed to handle all overloads in the entire data center.

Recognizing the overload continuum exists, and selecting the
correct amount of each type of excess space can allow an increase
in the number of VMs supported in the data center. Assuming that
migration and cooperative swap can handle overload longer and
shorter than one minute respectively while preserving application
performance, we numerically compute the total number of VMs
that can be run in the data center under different oversubscription
levels. We fix the total amount of memory in the data center as
a constant just under 100 GB. For each memory allocation, we
input the likelihood of overload and the likelihood that the overload
is transient or sustained from Figure 3. The analysis iteratively
increases the number of VMs and calculates the amount of excess
needed to handle the expected number of simultaneous overloads,
in order to find the maximum number of VMs that can be safely
supported.

Figure 5 shows the number of VMs that can be supported with
high probability using Overdriver or a migration-only strategy. As
memory becomes more oversubscribed, more VMs can be run, but
more excess space must be maintained to endure overload. Since
cooperative swap consumes space proportional to the overload du-
ration, it allows more room for VMs than an approach that uses
migration to address all types of overload, including transient over-
load. To make this point clear, Figure 6 shows the breakdown of
memory in the data center, with Overdriver saving 12% more of
the data center resources for VMs in the 640 MB case. If the phys-
ical machines are oversubscribed too much, corresponding to VM
allocations of only 512 MB in this case, the excess space required

7 VMs that make up a single application can experience correlated overload;
however the enterprise data in Section 2 indicates that overload is not highly
correlated across all VMs in a well provisioned data center.
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Figure 6. The breakdown of data center resources in terms of
space for VMs, excess space for migrations, and excess space for
cooperative swap.

to handle sustained overload through migration begins to dominate,
reducing the available memory to support additional VMs.

4.3 Discussion

The maintenance of excess space is a key issue when designing
a system to handle overload in the data center. Where the various
types of excess space are placed throughout the data center, when
and how excess space is reclaimed after an overload, and how
to combat fragmentation within excess space, are all important
questions to consider.

Each mitigation strategy imposes different constraints on how
its portion of excess space can be placed throughout the data cen-
ter. Excess space saved for cooperative swap in the form of page
repositories has very few constraints on placement: there is no re-
quirement that swap pages are stored on the same physical ma-
chine, nor do the page repositories need many other resources, like
CPU. On the other hand, excess space saved for migration has more
constraints: there must be enough resources to support a full VM
co-located on a single physical machine, including memory and
CPU. Another mitigation strategy that we have not discussed is
memory ballooning, or modifying the memory allocation on the
local machine. Excess space saved for ballooning has very limit-
ing constraints, namely that it must reside on the same physical
machine as the VM that is experiencing overload. Resource alloca-
tion and placement algorithms must adhere to each of these various
constraints.

Overload occurs in a continuum of durations, but when it finally
subsides, the excess space that was being used for the overload
must be reclaimed. The reclaiming process can be proactive, in
which excess space is pre-allocated before overload occurs, or
reactive, in which resources are dynamically carved out of the data
center on an as-needed basis. Regardless, policies for reclaiming
resources are tightly integrated into VM placement and resource
allocation, located in the control plane.

Reclaiming memory resources for future migration operations
may require squeezing the memory allocations of VMs which may
or may not have experienced an overload, and care must be taken to
ensure that the reclaiming process does not trigger more overloads
in a cascading effect. Reclaiming space in a cooperative swap page
repository, on the other hand, can be straightforward—if the VM
reads a swap page after overload subsides, that swap page can
most likely be deleted from network memory. Otherwise, if the
swap page has not been read, the swap page will remain outside
of the VM. However, the swap page can be copied to local disk

and removed from network memory at any time,8 although the
performance of a future read of the page will suffer.

Resource reclaiming may also need to consider the fragmenta-
tion that occurs within excess space. For example, after a migration
completes, some resources are allocated to the overloaded VM. The
amount of resources awarded need not be the original requested
amount nor must they include all of the available resources on the
physical machine. More likely, there will be some resources re-
maining that are insufficient to host a new VM, but not needed by
any of the running VMs. Filling the unused resources with cooper-
ative swap page repositories is one option to combat fragmentation,
but ultimately, some consolidation process involving migration will
be necessary, once again tightly integrated with VM placement and
resource allocation.

4.4 Implementation

We have implemented Overdriver to run on Xen. We leverage Xen’s
built-in support for live migration and implement cooperative swap
clients and page repositories from scratch. The Overdriver agent,
written in Python, locally monitors the paging rate of the VMs
on its physical machine to detect and react to overload. Probabil-
ity profiles are maintained in a straightforward manner, which up-
dates the migration threshold. Page repositories implementing ex-
cess space for cooperative swap exist as C programs, executed in
Xen’s Domain 0, that pin memory to ensure that pages written and
read do not encounter additional delays. While much of the im-
plementation is straightforward, given space constraints, we focus
on some interesting implementation considerations for the overload
controller and the cooperative swap subsystem.

4.4.1 Overload Controller

As described above, the overload controller within the agent initi-
ates a migration operation after overload has been sustained past an
adaptive threshold. However, the implementation must be able to
identify overload from normal behavior. Based on our observations
of VMs that are using the paging system, a very low paging rate
tends to be innocuous, done occasionally by the operating system
even if there is no visible performance degradation. While any pag-
ing may be a good indication of future overload, Overdriver uses
a threshold on paging rate to determine whether overload is occur-
ring.

Furthermore, the implementation must differentiate between a
series of transient overloads and a sustained overload which has
some oscillatory behavior. From our experiments inducing sus-
tained overload, we observe oscillations that can last almost a
minute long. In order to correctly classify periods of oscillation as
sustained overload, Overdriver includes a sliding window, where a
configurable number of time intervals within the window must have
experienced overload.

4.4.2 Cooperative Swap

A key factor in the performance of cooperative swap is where the
client is implemented. In order to remain guest agnostic, we only
consider implementations within the VMM or the control domain
(Domain 0) of the hypervisor. We have experimented with two
different architectures. In the first, we leverage the Xen block tap
drivers [32] (blktap) as an easy way to implement cooperative
swap clients in user-space of Domain 0. When a VM begins to
swap, Xen forwards the page requests into userspace, where the
block tap device can either read or write the pages to the network
or the disk. We noticed that swapping to disk, using a blktap
driver in Domain 0 for the disk, was significantly outperforming

8 Depending on the fault tolerance policy, a swap page may already be on
local disk (see Section 4.4.2).

211



cooperative swap. The reason for this unexpected result was that
pages being written by the user-space disk driver were being passed
into the kernel of Domain 0, where they would enter the Linux
buffer cache, and wait to be written asynchronously. Asynchrony is
especially well suited to cooperative swap, because, unlike writes
to file systems or databases, the pages written out have no value in
the case of a client failure. Furthermore, the buffer cache may be
able to service some reads. In order to take advantage of the buffer
cache, in addition to reducing context switch overhead, we decided
to implement cooperative swap in the kernel underneath the buffer
cache, similar to a network block device (nbd).

Regardless of the location of the cooperative swap client, the
implementation must provide some additional functionality to read-
ing and writing pages to and from page repositories across the net-
work. We highlight two interesting aspects of the implementation.
First, cooperative swap clients must be able to locate pages, which
may or may not be on the same page repository, even after a VM has
migrated. In-memory state consists mainly of a per-VM hash table,
indexed by the sector number of the virtual swap device. Each entry
includes the address of the page repository the page is stored at, a
capability to access the page, and the location of the page on disk.
Both the data structure and the swap pages on disk must be mi-
grated with a VM. This is currently done during the stop-and-copy
portion of live migration, although a pre-copy or post-copy live mi-
gration technique could be implemented for both the data structure
and disk pages. Second, it is important to ensure that failure of a re-
mote machine in the data center does not cause failure of a VM that
may have stored a swap page there. Fortunately, there are several
accepted mechanisms for reliability in a system that uses network
memory. By far the simplest is to treat the page repositories across
the network like a write-through cache [7, 8]. Since every page is
available on the disk as well as to the network, the dependency on
other machines is eliminated, and garbage collection policies are
simplified. Reads enjoy the speed of network memory, while writes
can be done efficiently through asynchrony. Alternative approaches
exist, such as using full replication of swap pages or a RAID-like
mirroring or parity scheme [19, 22], but they add considerable com-
plexity to failure recovery as well as garbage collection.

5. Evaluation
We have argued that in order to enable high data center utiliza-
tion using aggressive memory oversubscription, it is necessary to
react to overload, both transient or sustained. In this section, we
quantify the tradeoffs described in Section 3 in terms of the im-
pact of each strategy on application performance, and in terms
of overhead to the data center, most notably network and excess
space overhead. We also show that Overdriver successfully nav-
igates this tradeoff, maintaining application throughput to within
8% of a non-oversubscribed system, while using at most 150 MB
of excess space for transient overloads.

At a high level we want to answer the following questions:

• Does Overdriver maintain application performance despite
memory overloads?

• Does Overdriver generate low overhead for the data center
despite memory overloads?

The answers to these questions clearly depend on the application,
its traffic, and the level of oversubscription employed. Ideally, we
would like to deploy Overdriver in a production data center and
experiment with varying oversubscription levels to answer these
questions. Unfortunately, we do not have access to a production
data center, so we once again experiment with SPECweb2009.
Instead of simulating a realistic client workload as described in
Section 2, we run a steady base load of clients and inject bursts of
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Figure 7. Observed memory overload duration roughly matches
the duration of the injected client burst.

various duration in order to evaluate the performance of Overdriver
in the face of different types of memory overload.

To be more precise, each SPECweb2009 experiment consists
of a steady client load of 250 simultaneous sessions being im-
posed upon a web server VM. The VM, which initially requested
1024 MB, has only been allocated 512 MB of memory because of
oversubscription, achieved by inflating the VM’s memory balloon.
The experiment lasts for 10 minutes. After waiting for 1 minute at
the steady state, a client burst is injected, increasing the number
of simultaneous sessions by 350 for a total of 600 sessions dur-
ing bursts. The burst is sustained for a configurable amount of time
before the simultaneous sessions return to 250 for the remainder
of the experiment. A longer client burst roughly corresponds to a
longer memory overload, as shown in Figure 7. The physical ma-
chines used in the experiments have 4 GB of memory each, while
the memory allocation of Domain 0 is set at 700 MB.

Through the experiments we compare how Overdriver handles
overload (identified as overdriver in each graph) to several other
techniques. First, as a best-case, we measure the performance of
the application, had its VM been well-provisioned. Then, the op-
tion of simply swapping pages out to disk (called disk swap) is
provided as a worst case for application performance, and a base-
line for data center overhead. In between these two extremes we
run a solely cooperative swap approach (coopswap) and a solely
migration-based approach (migration). The migration approach
has a number of factors, discussed earlier, that make it difficult to
compare against. Resource allocation and placement are central to
migration strategies, as is some sort of migration trigger. To avoid
these issues, we compare against an idealized migration scenario
involving a different VM co-located on the same physical machine
as the overloaded VM. On the first sign of overload, this other VM,
which has a memory allocation of 1024 MB, is migrated to another
physical machine, releasing its memory for use by the overloaded
VM. In reality, VM allocations can be much larger than 1024 MB,
resulting in longer delays before migration can complete and more
impact to the network. So, in some sense, the migration strategy
we compare against is a best-case scenario in terms of application
impact and data center overhead.

Throughout the experiments, we configure Overdriver to moni-
tor the VM every 10 seconds, and consider time intervals where the
paging rate is above 200 operations per second as periods of over-
load. The threshold used to trigger migration is initially set at 120
seconds, with a sliding window parameter requiring 8 out of the 12
measurements to be overloads (i.e. 120 seconds comes from twelve
10 second monitoring periods and requires at least 80 seconds out
of a window of 120 seconds to trigger a migration).

212



 0

 20

 40

 60

 80

 100

1 sec 2 min 4 min 6 min

P
er

ce
nt

ag
e 

of
N

on
-o

ve
rs

ub
sc

rib
ed

T
hr

ou
gh

pu
t (

%
)

Injected Client Burst Duration      

overdriver

migration

coopswap

disk swap

(a) Throughput

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  1  2  3  4  5  6

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(m
s)

Injected Client Burst Duration (min)

coopswap
overdriver
migration
baseline

(b) Average response time

Figure 8. The effects of each mitigation technique on the SPECweb2009 application. Overdriver maintains application throughput within
8% of that of a non-oversubscribed VM and an average response time under 1 second for any length overload.

Threshold(s) Tput(%) Response Time (ms)
100 94.97 946
120 92.47 1249
150 93.76 1291
170 84.52 1189
200 84.85 1344

Table 2. As the threshold for migration increases, more perfor-
mance loss is experienced. This table shows the lowest percentage
of throughput achieved, and highest average response time, out of
all durations of overload.

5.1 Application Effects

Figure 8 shows the performance degradation experienced by the
application under various overload mitigation strategies in terms
of lost throughput and increase in average response time. First, we
examine the aggregate throughput over the 10 minute experiment.
The experiment was run on a well-provisioned VM to get a baseline
for how many connections should have been handled if no overload
occurred, which was between 23 and 38 thousand connections, de-
pending on the length of the injected client burst. Figure 8(a) shows
the percentage of that ideal throughput for each strategy. The first
thing to notice is that the throughput while using disk swap drops
off dramatically, whereas degradation is much more graceful us-
ing cooperative swap. Migration, on the other hand, completes with
nearly full performance, except for very small spikes resulting in re-
ductions in throughput performance for short periods of time, until
migration completes and benefits of migration can be seen. A less
aggressive solely migration-based strategy would degrade with disk
swap until migration was triggered. Overdriver, on the other hand,
begins to degrade gracefully along with cooperative swap, but then
improves for longer overload as it switches to rely on migration. A
similar pattern can be seen with application response time, shown
in Figure 8(b). While longer overload periods cause cooperative
swap to increase the average response time, Overdriver levels off
when migration is used. Disk swap is not shown on Figure 8(b)
because it performs significantly worse than other strategies; the
average response time varies between 2.5 s and 16 s, depending on
the overload duration. Overall, Overdriver achieves a throughput
within 8% of a well-provisioned, non-oversubscribed VM, and an
average response time under 1 second.

In terms of application throughput, we see that Overdriver de-
grades gracefully to a point, at which overload is sustained and war-
rants migration. The cost of Overdriver to the application, while
fairly low, is higher than a very aggressive migration strategy, be-
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Figure 9. Network traffic induced by various length load spikes
using cooperative swap versus disk swap.

cause Overdriver pays for the time spent deciding whether the spike
will be sustained. Cooperative swap drastically improves perfor-
mance while making this decision. As discussed earlier, especially
given the prevalence of transient overload, the number of migra-
tion operations required is also drastically reduced, affecting both
the amount of excess space required, and ultimately the number of
VMs that can be supported in the data center.

The choice of threshold has an effect on the application perfor-
mance, because a higher threshold translates into an increased re-
liance on cooperative swap. Table 2 shows application performance
experienced by Overdriver as the migration threshold due to sus-
tained overload varies. As the threshold increases above 120 sec-
onds performance degrades. This performance degradation gives
an idea of the performance that can be gained by adaptively learn-
ing a tighter threshold.

5.2 Data Center Effects

The most immediately quantifiable impact to the data center of the
overload mitigation techniques we have described is in terms of
the amount of traffic induced on the network, and in terms of the
amount of excess space required for migration or cooperative swap.
We show that Overdriver can handle transient overloads with a
fraction of the cost of a purely migration-based solution. However,
we also show that Overdriver incurs additional costs for sustained
overloads.

Figure 9 shows the amount of traffic sent and received during the
experiments described above for various length client bursts. The
number of pages written to the cooperative swap page repositories
increases fairly linearly as the length of the overload increases.
However, cooperative swap also reads from the page repositories,
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Figure 10. Amount of excess space required for migration and
cooperative swap using Overdriver.

Threshold(s) Traffic(GB) Space(MB)
100 2.1 424
120 3.6 549
150 4.4 554
170 5.6 568
200 6.1 590

Table 3. For sustained overloads, as the threshold for migration in-
creases, more overhead is accumulated while waiting for migration
to happen. This table shows the maximum overhead for cooperative
swap in terms of traffic generated and excess space required for a
sustained overload.

which results in a further increase in network traffic. Migration,
on the other hand, exerts a fixed constant, which is almost entirely
written, regardless of the duration of overload. The fact that the
value on the graph is fixed at 1 GB is because that is the memory
allocation of the VM that is being migrated in this experiment.
If a larger, 2 GB VM was migrated, we would see the migration
line at 2 GB instead. Overdriver follows the cooperative swap line
until the duration of overload exceeds its threshold, and it resorts to
migration. This causes a sharp increase by the memory allocation
of the VM (1 GB in this case) in the amount of data written to the
network by Overdriver for sustained overload. In other words, to
get the benefit for transient overloads, Overdriver pays a cost for
sustained overloads that is proportional to the amount of time it
used cooperative swap.

The amount of traffic over the network does not necessarily
show the amount of excess space that is required for cooperative
swap. For example, some pages may be written, read, then over-
written, without consuming more space at the page repository. Fig-
ure 10 quantifies the amount of excess space required for migration
and cooperative swap. Even though cooperative swap may gener-
ate a virtually unbounded amount of network traffic for sustained
overload, the amount of space that is required remains reasonable.
In particular, the amount of space required does not increase above
the amount of memory that was withheld because of oversubscrip-
tion. For transient overloads, Overdriver must only use the modest
amount of excess space for cooperative swap. For sustained over-
loads, however, Overdriver uses both.

Similarly to application performance, data center impact is also
affected by the threshold that Overdriver uses. Table 3 quantifies the

increases in overhead for a sustained overload that can be reduced
by adaptively shrinking the threshold.

Finally, while Figures 9 and 10 quantify a tradeoff, and show
how Overdriver navigates the tradeoff for a single overload, they
only provide a glimpse into the tradeoffs that would appear if done
at a data center scale. In particular, transient overloads are dom-
inant, and so the modest savings that Overdriver achieves in this
graph must be multiplied by the number of transient overloads,
which should far outweigh the overhead incurred for the relatively
rare sustained overloads; namely, Overdriver saves over a factor of
four network bandwidth when compared to migration only. Fur-
thermore, as discussed in Section 4, the differences in terms of how
excess space is being used has far-reaching implications in terms
of additional costs related to maintaining excess space.

6. Related Work
Overdriver uses aggressive memory oversubscription to achieve
high data center utilization. This section describes some related
work on memory oversubscription in a virtualized environment,
VM migration, and network memory.

6.1 Memory Oversubscription

The ability to oversubscribe memory is common in modern vir-
tual machine monitors. VMWare ESX server [31] was the first to
describe memory balloon drivers which provided a mechanism to
remove pages from a guest OS by installing a guest-specific driver.
Xen [4] also contains a balloon driver. Balloon sizing can be done
automatically with an idle memory tax [31] or as a more sophis-
ticated driver inside the guest OS[12]. While ballooning allows
changes to the allocation of machine pages, memory usage can also
be reduced through page sharing techniques: mapping a single page
in a copy-on-write fashion to multiple VMs. This technique was
first described in VMWare ESX server [31] and has subsequently
been extended to similarity detection and compression in Differ-
ence Engine [10]. Memory Buddies [35] is a migration-based strat-
egy that tries to place VMs to optimize for page sharing. Satori [21]
is examining new mechanisms to detect sharing opportunities from
within the guest OS. These systems are great mechanisms for over-
subscribing memory; however, a robust system to reactively han-
dle and mitigate overload, like Overdriver, is necessary to maintain
performance.

6.2 Migration

VM migration has become very popular and is touted as a solution
free of residual dependency problems that have plagued process
migration systems for years [20]. Stop-and-copy VM migration
appeared in Internet suspend/resume [17]. Compression has been
noted as a technique to improve the performance of migration, es-
pecially if the image contains lots of zeroes [26]. However, these
techniques all impose significant downtimes for VMs. Live migra-
tion techniques, on the other hand, allow VMs to be migrated with
minimal downtime. Push-based live migration techniques are the
most popular; implementations include VMWare’s VMotion [23],
Xen [5], and KVM [16]. Pull-based live migration [12] has been
evaluated and a similar mechanism underlies the fast cloning tech-
nique in SnowFlock [18].

We do not discuss addressing memory overload by spawning
VMs. If a hosted service is structured to be trivially parallelizable,
such that a newly initialized VM can handle new requests and share
the load, spawning may be another viable mechanism to alleviate
memory overload. Work has been done to maintain a synchronized
hot spare [6] and to speed up cloning delays [18, 25].

There are many migration-based approaches that try to achieve
various placement objectives, but they do not discuss maintaining
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excess space to handle overload. Khanna et al. [15], use heuris-
tics to try to consolidate VMs on the fewest physical machines,
while other approaches Entropy [11] and Van et al. [30] aim for an
optimal consolidation with the fewest migrations. Sandpiper [34]
uses migration to alleviate hotspots in consolidated data centers.
In an effort to eliminate needless migrations, Andreolini et al. [3]
use a trend analysis instead of triggering migration with a utiliza-
tion threshold. Stage and Setzer [28] advocate long-term migration
plans involving migrations of varying priority in order to avoid net-
work link saturation.

6.3 Network Memory

Overdriver uses cooperative swap to address the paging bottleneck
of overloaded VMs. Accessing remote memory on machines across
a fast network has been recognized to perform better than disk for
some time [2], and this concept has been applied to almost every
level of a system. memcached [1] leverages network memory at the
application level. Cooperative caching [7] gains an extra cache level
in a file system from remote client memory. The Global Memory
System [8] uses a remote memory cache deep in the virtual mem-
ory subsystem of the OS, naturally incorporating all memory usage
including file systems and paging. Nswap [24] and the reliable re-
mote paging system [19] focus specifically on sending swap pages
across the network. Cellular Disco [9] is a hypervisor that uses net-
work memory to borrow memory between fault-containment units
called cells. Most similar to cooperative swap, MemX [13] imple-
ments swapping to the network for a guest VM from within the hy-
pervisor. MemX is focused on extremely large working sets that do
not fit in a physical machine’s memory, whereas cooperative swap
is designed to react quickly to overload bursts, many of which are
transient. Other techniques to increase the performance of paging
include the use of SSDs. However, addressing the paging bottle-
neck is not enough to handle the entire overload continuum, partic-
ularly sustained overloads.

7. Conclusion
As interest grows in oversubscribing resources in the cloud, ef-
fective overload management is needed to ensure that applica-
tion performance remains comparable to performance on a non-
oversubscribed cloud. Through analysis of traces from an enter-
prise data center and using controlled experiments with a realistic
Web server workload confirmed that overload appears as a spec-
trum containing both transient and sustained overloads. More im-
portantly, the vast majority of overload is transient, lasting for 2
minutes or less.

The existence of the overload continuum creates tradeoffs, in
which various mitigation techniques are better suited to some over-
loads than others. The most popular approach, VM migration-based
strategies, are well suited to sustained overload, because of the
eventual performance that can be achieved. Cooperative swap ap-
plies to transient overloads, where it can maintain reasonable per-
formance at a low cost.

We have presented Overdriver, a system that handles all dura-
tions of memory overload. Overdriver adapts its mitigation strat-
egy to balance the tradeoffs between migration and cooperative
swap. Overdriver also maintains application VM workload profiles
which it uses to adjust its migration threshold and to estimate how
much excess space is required in the data center to safely manage
overload. We show, through experimentation, that Overdriver has
a reasonably small impact on application performance, completing
within 8% of the connections that a well-provisioned VM can com-
plete under the continuum of overload, while requiring (under rea-
sonable oversubscription ratios) only 15% of the excess space that
a migration-based solution would need. Overdriver shows that safe
oversubscription is possible, opening the door for new systems that

effectively manage excess space in the data center for the purpose
of handling overload, ultimately leading to a new class of highly
efficient, oversubscribed data centers.

The Overdriver project webpage is available at:
http://overdriver.cs.cornell.edu.
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