The Impact of Concurrency Gains on the Analysis and Control of
Multi-threaded Internet Services

Hani Jamjoom

Chun-Ting Chou

Kang G. Shin

University of Michigan
{jamjoom,choujt,kgshin} @eecs.umich.edu

Abstract— With the proliferation of Internet services, many
solutions have emerged to provide Quality-of-Service (QoS)
guarantees when the demands for the hosted services exceed the
server’s capacity. In this paper, we take an analytical approach
to answering key questions in the design and performance of
application-level QoS techniques, especially those that are based
on the multi-threading or multi-processing abstraction. Key to
our analysis is the integration of the effects of concurrency into
the interactions between multi-threaded services. To this end,
we extend traditional time-sharing models to develop the multi-
threaded round-robin (MTRR) servers, a more accurate model
of operation of typical multi-threaded Internet services. For this
model, we first develop powerful, yet computationally-efficient,
mathematical relationships that describe the performance (in
terms of throughput and response time) of multi-threaded ser-
vices. We then apply optimization techniques to derive the optimal
allocation of threads given specific QoS objective functions. Using
realistic workloads on a typical web server, we show the efficacy
and accuracy of the proposed new methodology.

Index Terms— Queueing theory, system design

I. INTRODUCTION

Wide use and expansion of the Internet has led to the pro-
liferation of diverse and oftentimes complex Internet services.
These services, on the other hand, have created unprecedented
demands on end-servers, each of which usually hosts multiple
services like Web, e-mail, and database services. The increased
demands by end-users often out-pace the recent progress in en-
hancing server’s processing, storage and networking capacities,
hence easily overloading end-servers. The notion of Quality-
of-Service (QoS) has been introduced to manage resources
when user demands exceed resource supplies. Supporting QoS
in servers has been addressed extensively in the literature,
for example, in [2,4,6,11,32]. In particular, application-level
QoS mechanisms are designed to provide the necessary QoS
guarantees with little or no support from the end-server’s
OS [2,10,13,15,22,25]. However, since the underlying OS
enforces resource transparency (i.e., hides resource manage-
ment), application-level mechanisms have limited capabilities
in enforcing strict service guarantees and are often restricted
to only providing proportional QoS differentiation. In this
paper, we closely examine and evaluate the extent to which
application-level mechanisms can provide QoS support.

The work reported in this paper was supported in part by the National
Science Foundation under Grant CCR-0216977.

One of the more popular application-level solutions is
thread-based QoS mechanisms [23, 24, 32] in which the allo-
cation of threads or processes to each application or service is
adjusted (either statically or dynamically) based on some target
QoS objectives (Figure 1). Two design principles motivate the
use of thread/process allocation to provide QoS differentiation
to multiple services: (1) increasing concurrency improves the
performance of a single service, and (2) server capacity can be
divided in proportion to the thread allocation. Unfortunately,
the extent to which thread-based mechanisms are effective
depends heavily on the degree of interaction between the
running threads, which further depends on the nature of the
workload of incoming requests. This paper carefully examines
each of the two design principles with the goal of providing
deeper understanding of internal dynamics behind this QoS
mechanism.

When a service is allocated more threads, the advantages of
increased concurrency are apparent in the resulting increase in
throughput. This improvement is due to concurrent processing
of requests, which allows the overlapping of long blocking
I/O operations of one request with non-blocking operations
of another. There is, however, a saturation point beyond
which increased concurrency no longer yields any performance
benefits. When multiple services use concurrency to improve
their own performance, the interaction between their threads
become more complex. In fact, we have found that as the
system’s load increases, the performance interaction between
different service classes, due to resource sharing, becomes less
predictable. Furthermore, when different types of workloads
(e.g., 1/O-heavy and CPU-heavy) are sharing the system, a
marginal improvement in the QoS of one service can cause
a dramatic decrease in the QoS of the other services. Based
on our measurements and observations, we show that multi-
threading is ill-suited for providing application-level QoS
support. On the other hand, it can be effectively used to provide
QoS guarantees to different client groups.

In this paper, we take an analytical approach to precisely
characterize the interactions between threads and services in
an Internet server. Crucial to the correctness of our analysis
is the development of an accurate model that reflects the
operation of the server. We introduce the multi-threaded round-
robin (MTRR) server model to capture the multi-threading
and process-sharing abstractions of real systems. The MTRR
model is an extension of traditional round-robin servers, which

Service class 1 ------ - Application A

7190

Service / \

class 2 | @)

Incoming P /
Requests | :) /;;::::::

. Service class 2 ;. AN

Response

i schedule in a |
i round-robin
 fashion

Service

- 2Ol
T 0]

. %
thread o= *“L\
Application B

Service class n

Service Class
Queues
«— >
Kernel space User space

Fig. 1. Thread-based system model. Application A uses two service classes
to give preferential treatment for requests in service class 1 than requests
in service class 2. Application B uses one service class to enforce a certain
QoS to all incoming requests. A controller (not shown) can then adjust the
allocation of system threads to different service classes.

are used in the analysis of polling and time-shared systems [19,
20, 29]. Unlike traditional approaches, our model incorporates
the performance benefits of increased concurrency into the
interaction between the running threads. Using this MTRR
model, we are able to derive powerful, yet efficient, relation-
ships that describe the internal dynamics of a typical multi-
threaded server. Furthermore, these relationships allow us to
address three important issues in the design and performance
of application-level QoS differentiation: (1) better predict the
impact of thread concurrency on client-perceived delay than
traditional models, (2) estimate the expected performance of
services for any thread allocation, (3) find the thread allocation,
if any, that guarantees certain response times to different client
groups (e.g., paying customers are given preferential treatment
over the non-paying ones).

This paper is organized as follows. We analyze, in Section |1,
the benefits of concurrency in multi-threaded applications. We
then establish the server and application models for our anal-
ysis in Section I11. Section IV presents a detailed analysis of
the MTRR server to provide the basic relationships governing
the performance of multi-threaded services. In Section V, we
look at the effects of workload dependencies on the analysis
of multiple services being hosted on a single server. We then
provide, in Section VI, a computationally-efficient algorithm
for determining the optimal allocation that meets various QoS
objectives. We use real measurements on a typical Web server
in Section VII to evaluate the correctness our derivations and
effectiveness of our allocation algorithm. We review related
work in Section VIII. Finally, in Section 1X we conclude the
paper with our final remarks.

II. QUANTIFYING CONCURRENCY GAINS

Using concurrency to improve server performance is one of
the guiding principles for providing thread-based QoS support.
This notion was explored in [23,24, 32] as an integral part of
their feedback control mechanism that increases the allocation
of threads to running applications when better performance is

needed. Implicit to the effective operation of these mechanisms
is the notion that increasing the number of threads improves the
performance of the application. Particularly, the performance
gain due to increased concurrency is normally split into three
regions as shown in Figure 2: (I) a linear increase region
due to overlapping blocking operations of some threads with
non-blocking operations of the other threads, (II) flat or no-
gain region due to threads contending for the bottleneck
resource, and (I11) sudden (or exponential) drop region due to
memory thrashing. In this section, we establish this behavior
for different workloads on a real system. This will set the stage
for exploring the impact of concurrency on the controllability
of multi-threaded applications.

We define G (m) as the speedup (or gain) function that
expresses the potential performance gain (or loss) when m
threads run concurrently. Because the expected speedup is
workload-dependent, the function needs to be profiled for each
specific workload, denoted by the subscript k. The speedup
function expresses the change in throughput rather than the
change in response time. This is because increasing concur-
rency does not reduce the actual amount of work that each
request needs. Instead, it increases the efficiency of the server,
which can be captured by the improved throughput. To profile
Gr.(m), we first measured the maximum service throughput,
fix(m), when m threads run concurrently. This is done by
limiting the application to have a maximum of m concurrent
threads (for m = 1,2,...) and configuring the arrival rate to
be high enough to keep all threads busy processing incoming
requests. The speedup function is, then, the throughput gain
when m threads are allocated compared to when a single thread
is allocated. Specifically,

fir (m)

rlm) =70
To illustrate the general characteristics of concurrency im-
provements, we configured a server machine (a 2.24 GHz
Pentium 4 with 1 GBytes of RDRAM) to run Apache 1.3 and
receive HTTP requests through a high-speed FastEthernet link.
Three Linux-based machines are used to generate the desired
requests. Our load generator, Eve [17], follows the same design
principles provided by SPECWebh99 [12], a widely-used tool
to evaluate the performance of Web servers, to test static and
dynamic workloads.® The primary difference between the two
load generators lies in our ability to sustain an arrival rate
regardless of the progress of on-going requests. In contrast,
SPECWeh99 sends a fixed maximum number of requests; once
the maximum is reached, a new request is sent only after
the completion of a previous one. We profiled G (m) for
three workloads: purely static, purely dynamic, and mixture
of the two — mixed for short. Each workload adheres to
the specification provided by SPECWeb99; in general, the

1The static workload consists of only static objects, resembling web pages
and embedded images. The dynamic workload is similar to the static one,
except the requested objects are created on-the-fly for each incoming request
using CGl scripts.

saturation thrashing

A point \b point \b
max
speedup
o (m-1)+1
Gx (m)
1+ (1) (11) (111)
>
1 Number of threads (m)
Fig. 2. Shape of the speedup function, Gy (m). The function increases at a

linear rate in region | up to the saturation point. The function, then, flattens
out in region Il and suddenly drops after the collapse point in region Ill.

requested files follow a Zipf distribution [8] regardless of
whether they are statically or dynamically generated.

Figure 3 shows Gy (m) for the three workloads, with the
abscissa drawn in log-scale. The first two regions outlined
earlier are clearly depicted by the figure, where the linear
region is reflected by the sub-linear growth in the log scale.
The combination of having a fast machine with large memory
and running processes with small memory footprints prevented
reaching the collapse point. This was the case even when a very
large number of processes run simultaneously.

The width of the linear increase region (i.e., region 1) in
Figure 3 and its slope depend heavily on the type of workload.
We approximate the speedup function in region | by a simple

linear function:
Gi(m)=ar(m—-1)+1 form=1,...,m},

where m! reflects the saturation point (defined later), and
the slope, ay, reflects the speedup rate, or alternatively, the
efficiency of concurrency for workload k. In the ideal case,
where each additional thread behaves as an independent server,
ap = 1. This is seldom the case, and therefore, o, < 1. The
mixed workload, for instance, had a speedup rate a ;. =
0.14 and a linear increase region of m! ~ 23 threads. If
the workload is purely CPU-based or purely 1/0-based, then
one expects little performance gain since blocking and non-

blocking operations are not overlapped. In that case, o = 0.

The transition point between regions | and Il, which we
call the saturation point (m?), is primarily due to threads
contending for the bottleneck resource — usually the disk.
When a single class is being controlled, increasing the number
of threads to be allocated beyond the saturation point provides
no performance advantage to the hosted service. But when
multiple services are being controlled, recognizing the satu-
ration point becomes more crucial since adding more threads
to one service class reduces the second class’ share of the
system. This may cause the second class to increase its thread
allocation and create a vicious cycle between the two classes
rendering the underlying control mechanism ineffective. It
is thus necessary for any dynamic control mechanism to
adjust the maximum thread allocation based on the observed
throughput; when no throughput gain is observed, then no
further threads should be allocated. This issue is explored

a=0.61

Dynamic ---x---

0 L PSR | L PSR |
1 10 100
Thread Allocation

1000
Fig. 3. Speedup function, G (m), for static, dynamic, and mixed workloads.

closely in the remainder of the paper.

I11. MODELING MULTI-THREADED SERVICES

The complexity of today’s servers presents a real challenge
in building analytical models that fully describe the dynamics
of the underlying server. Our goal is, thus, to create a model
that is simple enough to allow for mathematical tractability,
yet accurate enough to reflect realism. Specifically, the created
model must capture the effects of concurrency as well as the
basic interaction between the various running threads. In this
section, we give a detailed specification of our system by
describing the computing model, which details the assumed
operation of a typical multi-threaded server, and the workload
model, which specifies the arrival and service-time distribution
of incoming requests.

A. Computing Model

Our computing model is based on a general understanding
of the typical operation of current time-sharing OSs and
Internet services. We use an MTRR server to model a general
computing environment where a single processor is shared
by multiple threads.? Threads are assumed to be the smallest
allocatable unit of work and are distributed among n service
classes, {S1,S2,...,S,}. Specifically, each service class Sy, is
allocated m} threads and has an independent buffer of size B,
to hold the requests that cannot be processed immediately. We
use the term “service classes” as opposed to just “services”
to capture the situation where a single service is configured
to differentiate between multiple client populations (Figure 1).
An example of this is Apache’s Virtual Host (VH), where, for
instance, clients from network 192.168.10.x are serviced
using one VH and clients from the remaining IP address-
space are serviced using another VH. Thus, our Apache
service is said to have two service classes. In contrast, if an
application does not differentiate between clients, the entire
application is represented by a single service class. Using the

2We use the terms “threads” and “processes” interchangeably throughout
this paper.

notion of a service class, therefore, allows us to capture QoS
differentiation between different applications and also between
client groups within a single application.

Beside having threads as a shared resource, dependencies
between service classes arise due to two possible interactions:
(1) they share a bottleneck resource such as a disk and (2)
they are organized as a series of stages where an incoming
request must be processed by multiple services in a particular
order [10,32]. The complexities that are introduced by the
latter is akin to those in network of queues [9], but with depen-
dent service distributions. In this paper, we restrict our analysis
to single-stage services and focus on the dependencies due to
resource sharing. We, thus, make the following assumptions
for the internal operation of an MTRR server.

Al. A request is assigned to a working thread. Multiple requests
can be processed simultaneously by running multiple threads
and time-sharing the system. We assume that all threads are
homogeneous,® even though they can be assigned to different
service classes. This is in line with actual OS operation as
system threads can be created and removed easily with little
overhead.

A2. A thread is either running, ready, or blocked waiting for a new
incoming request. Basically, a ready thread is waiting for its
share of the server to continue processing a request, and a
blocked thread is waiting for a new request. We do not consider
alternate states in which a thread is waiting for other operations
to complete such as blocking for 1/0. These are captured by the
speedup function.

A3. All threads are of equal priority. Service priorities have been
studied in both queueing and real-time systems [21,33]. In-
cluding service priorities in our model will, unfortunately,
complicate our analysis and is, thus, omitted from our model.

A4. Threads (in the ready state) are scheduled (by the underlying
OS) in a round-robin fashion, each for @ seconds or until
the thread finishes processing the current request, whichever
happens first. The task of servicing all ready threads once
is called a service round. We do not consider the effects of
hierarchical priority queueing, which is commonly used to age
long-running threads. Since all requests are relatively short-
lived and all threads have the same priority, a strict round-robin
algorithm can be assumed.

A5. Switching between different running threads is done instan-
taneously with no overhead. Similar to A2, we capture this
overhead in the speedup function, and hence, this is not a
limitation. Our decision is motivated by the fact that switching
overhead is load-dependent. That is, as more threads are running,
switching between threads will depend on whether the threads
need to be swapped out of memory or not. The speedup function
allows us to include load-dependent overheads in our analysis.

AB. The system has a fixed (finite) number of threads, m™*®. This
corresponds to the maximum number of threads that a typical
OS can support. Not all threads need to be allocated, but, the
total number of threads that are allocated to all service classes
cannot exceed this limit.

One final point to make is that our analysis does not consider
any particular server resource as the bottleneck resource.
Instead, the server is limited by the rate at which it can process
requests and this rate is defined by the service-time distribution

3That is, we do not mix different types of threads such as application-level
and kernel-level threads.

G (m):

and speedup function of incoming requests.

B. Workload Mode

In an Internet server, the workload model captures the arrival
of requests and service that each request requires. Both have
been studied extensively in the literature [3,5,7,14,27]. In
general, they have been observed to follow heavy-tail distri-
butions. In fact, we have observed similar behavior during our
workload analysis (omitted for space considerations). Heavy-
tail distributions are, unfortunately, difficult to analyze even
with very simple computing models. In order to provide better
understanding of the dynamics of multi-threaded services, we
assume that requests arrive following a Poisson process and
require exponential service times. Section VII evaluates our
model using realistic load distributions.

We distinguish between service time and processing time of
an incoming request. The former reflects how much work that
each request brings to the system, whereas the latter reflects
how much time it spends in service as it shares the system’s
resources with other requests. Thus, there are three parameters
associated with each service class Sy:

Ar: the mean request arrival rate of a Poisson arrival process.
1/pk: the mean service time of each request. It is equal to the
processing time only when the system is allocated a single
thread.
the speedup function as defined in Section Il. Even though
we use the subscript & to denote the service class, not the
workload, the characterization of Gy (m) remains unchanged.
For example, if Gi = G2 = Gstatic, it implies that both
service classes have static workloads. We assume that Gy (m)
only operates in regions | and Il (Figure 2). The point where
G (m) collapses is hard to predict a priori, but not very difficult
to detect [26, 31, 32]. For the purpose of our analysis, we assume
that detection/prevention from server thrashing is handled by a
separate mechanism. Therefore, we define the speedup function
as follows:

Giu(m) = {

where «y is the constant reflecting the efficiency of concurrency
and m, is the saturation point of service class k.

for 1 <m <m
for m > mé,

ap(m—1)+1

ag(mh —1) +1 @

IV. ANALYSIS OF MTRR SERVER

We focus in this section on the single service class MTRR
server. The analysis, however, requires extension of some of
the existing results from queueing theory and time-sharing
systems [19,20,33] to include the effects of concurrency
gains. This is done by introducing state-dependent service
rates through the speedup function. We first consider an
idealized model where the scheduling quantum is infinites-
imal, i.e,, @ — 0. Under this assumption, we are able
to model the MTRR server using Continuous-Time Markov
Chain (CTMC) [33]. Later we will estimate the resulting error
from this assumption.

Figure 4 shows the basic representation of the CTMC of
the single-class MTRR server. The state here represents the

saturation all threads are occupied

point I

Alx Ao A
R N I

TN TN

u® 2u) mep)

Fig. 4. Markov Chain representation of MTRR server.

number of requests in the system, and 1) represents the state-
dependent service rate, not the per-service class parameter, p,
described earlier. Therefore,

u = LG, @

where p and G(i) are the parameters describing the single
service class under study. We drop the subscript & as there is
only one service class.

We start by writing the steady-state probabilities for the
CTMC, which are based on the local balance equations:
A fori=1 0
@ Pi—1 or ¢ RN
oypi—1 fori =m'+1,... K,

mOp(m

pi = 3)
where m? is the number of allocated threads, and K is the
maximum number of requests that can be admitted into the
system, which includes requests both in queue and in service.
Specifically, K = B +m". Using Egs. (1) and (2), we rewrite
the expressions for probabilities as:

A
_) TEDotiuli—t
pi = A .
[(fn,—l)(x—i—l]u,pzfl

fori=1,...,m

fori=m+1,...,K, “)

where « represents the speedup rate as described in Section |1
and m = min(m®,m®). Notice the change of indicies in
Eq. (4) from m? to i since () remains unchanged for i > 7.
Let us define p = % and also ¥,(4) as follows:

U, (i) = {

1 fori=20

H;=1(ka +1) otherwise. ®)

Now using simple substitution, we can rewrite the expres-
sion of each p; as a function of pg.

W;l)po forizl,...7ﬁl
bi = cm p 7 . N (6)
m(ﬁ) po fOrZ:m+1,...,K,

where C' = (7 — 1)a+ 1. Since Y25 p; = 1, we can express
po as follows:

m ; " K -1
RS S L 5. o
i=1 Va(i—1) “Ija(mfl)(c)

F?

Po =

Using these steady-state probabilities, one can numerically
compute the expected number of requests in the system, N =
oK i.p;. Little’s formula [33], N = A(1 — px)W, can then
be used to compute the total response time, 1, which includes
both the queueing and processing delays. The term (1 —p k)
is used to account for the probability that an arriving request
finds a full queue and thus is dropped.

Given specific values for the system parameters, computing
the various results is straightforward and can be achieved in
O(K) operations. Our formulation of the MTRR server along
with the introduction of the speedup function constitutes a
superset of several well-studied systems. For instance, when
a = 0, we observe no speedup. This reduces to a Generalized
Processor Sharing (GPS) without priorities [18]. If we further
add the restriction of m® = 1, then only a single thread is
allowed to run. The system is further reduced to M/M/1/B
server. Finally, if o = 1, it implies ideal speedup or, effectively,
mO servers running in parallel. The system then becomes
M/M/m°/B.

subsectionComparison with Discrete Quantum Values

The development so far assumed an idealized case of Q —
0. Here we want to give a general idea of the expected
error that is introduced by this assumption. For simplicity, we
consider the worst-case scenario where the service is heavily-
loaded, i.e., m is always equal to m°. We also assume no
speedup, i.e., G(m) = 1. When @ — 0, the mean processing
time, Y, is just

mO

Y = —. (8)
7

Now, let @ be a positive real value — typical values are
0.01 sec. We want to derive an approximate expression for
Y. We consider the processing of a request by one of the m°
threads that always run during any service round (assumption
A4). Let X be an exponential random variable reflecting
the service time of an arriving request. Upon admission of
the request into service at the beginning of a service round,
its corresponding thread must first wait for its service turn
before it starts execution. When the thread is scheduled, if it
completes servicing the request in less than a time quantum
(i.e., X < @), its processing time is just the sum of X and
the queueing delay before it starts service. On the other hand,
if X > @, then we expect that after) seconds, the remaining
threads must run before the beginning of the next service
round, where the given thread must wait for its turn to run

again. This process repeats until the request is completed.

The time that a thread must wait for m other threads to be
serviced, either before or after it is scheduled, can be computed
as follows:

E[>_min(X, Q)] = m.E[min(X, Q)]

i=1

= m (/ © ehx(@)da+ /Q ~ Qfx(w)d$>

1 — e 1@
= m— ©)
nw

where fx (z) is the probability density function (pdf) of X.

During each service round, we assume that the order of
scheduling threads is completely random. That is, for any given
thread, its probability of being scheduled at the &-th position is
1/m®. We can now compute Y using the so-called regenerative
formulation:

E[V|m]

m9—1

> = {E[V\kz] + /OQ ofx (@)d

0
m
k=0

oo

+ (BEVIm® =k -1]+Y + Q) fx(x)d;t}

1 [mP+1 md—1
;{ 5t e_“’Q}. (10)

=l
[

When Q@ — 0 in Eqg. (10), we see that the results are
consistent with Eq. (8). Furthermore, the error between the
two equations is

md _ 1 [# +e—uQ#]
%Error = " " 5
m
w
0—1
- ”;mo [1 - e*ﬂQ] : (11)

In the case of the mixed workload, where 1 = 50 reqs/s, the
expected error is approximately 19%. We stress, however, that
this is a worse-case scenario. In our experiments, we found
that our derivations are within 10% of real measurements for
a wide range of configuration parameters.

We note that while using finite @ values to determine Y
better approximates the real system behavior, it is mathemati-
cally tractable when G(m) = 1. When G(m) > 1, this method
incorrectly reduces the processing times as it underestimates
the number of service rounds required for completing a single
request.

V. WORKLOAD DEPENDENCIES

When multiple service classes run on the same host, their
basic operation is similar to an MTRR server with a single
service class. But instead of allocating all m threads to one
service class, there are n service classes, {S1,S2,...,5.}
and each service class S; is allocated a fixed number of
threads m? such that their sum does not exceed the system-
wide thread limit m™* (Assumption A6). Each service class
also has separate workload parameters: (\;, i, Gi(m)). With
the introduction of multiple services into our model, the
analysis must consider two interdependencies between service
classes. The first, which we call direct interdependencies, is
due to threads time sharing the system. The second, which is
indirect interdependencies, is caused by the possible sharing
of a bottleneck resource such as the disk. We examine how
these interdependencies affect the analysis, and hence the
performance, of servers running multiple services.

The distinction between direct and indirect interdependen-
cies is important in the analysis and control of multi-class
servers. Direct interdependencies have predictable behavior
that can be accurately captured by an analytical model. An
ideal time-sharing system, e.g., [19,20], is a good example
where a thread will run for its entire scheduling quantum, @,
without blocking. Unfortunately, this is seldom the case for
web servers, especially with the growing popularity of per-
user customization. Therefore, when requests require many

200

180 A R
160
o
g 140
g 120
g_ 100 B Q ,-”/
S 80 X v .-~ No.sharing —+— -
o] RO Sy e mi=2 e
e 60F 0 oy M - . mi=4 ---%—--]
- 40 & X e my=8 - |
£ g W I mi=16 ——m—
m o7 e~ mij=32 --o--
S e mi=64 e -
O"' e PR A | " PR S | "
1 10 100
Class 1 (m?) Thread Allocation (threads)
" Nosharing ——
2000 mi=2
o
[0}
24
S 1500
o
=]
£ 1000
[=2)
=}
I3
£
500

1 10 100
Thread Allocation (m$) of Static Workload (threads)

Fig. 5. Workload interdependencies. (top) homogeneous workloads, (bottom)
heterogeneous workloads.

I/0 operations, the bottleneck is shifted from the CPU to the
memory or to the disk; it becomes much harder to predict the
impact of one service class on the other ones.

In some cases, precise understanding of indirect interdepen-
dencies may not be necessary. This occurs when requests from
different service classes have similar resource requirements.
The load on all of the resources (including the bottleneck one)
will, thus, be proportional to the number of requests that are
being concurrently processed in each service class. We refer to
these workloads as homogeneous. For example, a server that
wants to provide client-side differentiation can be configured
with several service classes, one for each group of clients. We,
therefore, expect that these service classes will have similar
service rates, p;, and speedup functions, G;(m), but with
possibly different arrival rates, A;. Alternatively, when very
different workloads need to be managed on the same system,
e.g., a web server and an FTP server, each incoming request
may have very different resource requirements. In this case,
we refer to the workloads as heterogeneous.

We study the multi-class server in the context of our
workload categorization. Our goal here is to quantify the
impact of increasing the concurrency of one service class on
the performance of the other running services. We use a similar
setup in Section 11, but now, we run two independent Apache
services. Each service can be configured to receive requests
for one of the three workloads: static, dynamic, and mixed. In

particular, we test two configurations. The first configuration
reflects the homogeneous workload, where incoming requests
to both Apache services are for the mixed workload; the second
configuration reflects the heterogeneous workload, where one
service is designated as the static workload and the other
service is designated as the dynamic workload. Finally, we
measure the maximum throughput as a function of the number
of threads that are allocated to each service class.

Figure 5 reflects the throughput gain as the thread allocation
of the first service class is increased while the allocation of the
second class is held constant. Each line represents a different
allocation for the second service class; the “No sharing” line
indicates that there is only a single class running on the server.

The homogeneous workload behaved as expected, where
the throughput of a service class is proportional to its thread
allocation. Specifically, we can express the service rate of any
service class as a function of the number of the threads that
are running:

n

> mi) u, (12)

=1

m
p(m) =~ S G(
where m; is the class-i threads that are running, or equivalently,
the number of requests that are being concurrently processed
by service class S;.

The heterogeneous workload, on the other hand, did not
exhibit the same behavior. Here we fixed the number of threads
that are allocated to the server with the dynamic workload
(SRViynamic Tor short) and increased the thread allocation
of the server with the static workload (SRViatic for short).
Based on our measurements, we observed three unexpected
phenomena:

P1. Even when SRVgynamic iS assigned a single thread, its impact
on the performance on SRViiatic iS significant. In fact, we
observed an artificial ceiling that limited the maximum perfor-
mance of the SRVsiatic.

P2. When the thread allocation of SRVgynamic IS increased, but
still below its saturation point (< 16 threads), SRVstqtic iNCUrs
a small decrease in performance.

P3. After the thread allocation of SRVgynamic IS increased beyond
its saturation point, the SRV:a+ic has a much greater perfor-
mance drop. In both cases (P2 and P3), the performance drop
is not proportional to the thread allocation of the two servers.

The above example shows an important result, namely,
without precise understanding of the resource requirements of
different and heterogeneous workloads, using thread allocation
to provide QoS differentiation is not an effective approach.
Fine-grain resource management must be used to provide
effective QoS guarantees [6, 28, 32]. Unfortunately, these tech-
niques require substantial changes to the application or the
OS. We, however, show that if services are configured with
homogeneous workload to provide client-side differentiation,
then multi-threading can be used as an effective tool.

VI. PROVIDING QoS GUARANTEES

Providing QoS guarantees is motivated by the need to
protect certain — possibly high-priority — service classes

@

m Class1 Class 2 Class 3
Each table corresponds to the 1
worst-case cost of class i if given L L L
m threads. The remaining 2
(m,,,~ m) threads belong to the L L L
other service classes, which are
assume to be saturated. m,

S,
v
@ Classes 1,2
A new table combines tables of class 1
and 2. Each row holds the minimum cost 2 L
if classes 1 and 2 are given m threads. L
This process is repeated that combines
the resulting table from the previous step
and the next service class. ax
v
Classes 1,2,3

The optimal allocation is found by tracing back the

=
allocation that produced the minimum worst-case

cost. M

Fig. 6. Dynamic programming algorithm for finding the allocation that
minimizes the worst-case cost of the system. The illustration is limited to
three service classes.

from others overloading the server. As shown in Section V,
this is very difficult without explicit OS support, where strict
resource limits are allocated to each service. In this section,
we describe the extent to which thread allocation can be used
to guarantee specific service delays. We will continue to focus
on homogeneous workloads; our proposed technique is aimed
at providing QoS guarantees to different client groups, each
represented by a separate service class.

We focus in this section only on providing worst-case
QoS guarantees. Here, the protected service is allocated the
minimum number of threads such that no matter how high
the load increases for the other service classes, it can still
(statistically) meet its QoS objective. We studied a more
general case in the extended version of this paper [16], where
we also characterized the behavior of the system for multiple
classes for any thread allocation. The derivation was based on
extending the Markov chain that was presented in Section 1V
to be multi-dimensional, where an additional dimension was
necessary for each service class. We have found that when the
system is lightly-loaded, thread allocation of a given service
class is minimally affected by the allocation of the other
service classes.

We start by considering the system that is heavily-loaded
such that all classes are overloaded except for a single one,
where the term “overloaded” implies that all threads are
continuously busy. Let & be the non-overloaded service class
and the other n — 1 classes have m; ~ mg, for j # k. Here
we also consider Q — 0. Since only class k is not overloaded,
the single class case in Section IV can be used, but with a
different state-dependent transition rates ;.

Going back to Figure 4, we can define u; as follows:

= _E _qu 13
W= T Gl - (13)

where v, = Z;”:O’#k mj. Here y is the same for all service

classes as the workload is assumed to be homogeneous. The
ratio - +“7 - reflects the fact that each thread has to share
the system with i + ~;, — 1 other threads. The steady-state
probabilities can be similarly defined:

Ak (itye) o . 0
i = iHG(i+gk)pz—l fori=1,...,m, 14)
. Ak +vk .
nz,(]zZ,(C:r(L’l;k-i’-yfn),g)pi_l fori=mp +1,..., Ky

The remaining derivation is similar to the one in Section IV
and is omitted. The computed Y} = (Zfiﬁ)i - pi)/ Ak, thus,
reflect the worst-case response time when all but class & are
overloaded.

The expression for the worst-case response time can now
be used to determine the thread allocation that can meet the
desired QoS objective. We express the QoS here using the
notion of holding cost. Formally, let hj(t) be the cost of
a request in service class k£ as a function of its response
time ¢. Using hx(t) gives us flexibility in defining different
QoS objectives. For example, it allows us to assign separate
weights to different service classes, which can be used to
provide different QoS levels to a multi-class QoS application. *
The holding cost function can be arbitrary, however, with the
restriction of being a monotonically non-decreasing function
of ¢.5

We now extend the notion of cost to any thread allocation
M. We first define ¢ (M) as the worst-case cost for service
class k£ in M. It is computed by assuming that all service
classes except for class & are overloaded as:

k(M) = hy(Yi),

where Y}, is just the worst-case response time as computed
above. The sum of these costs ¢(M) = >_ ¢;(M) is defined
to be the cost for allocation M. The allocation that minimizes
the worst-case cost is thus

Mpin = mlvlln{c(M)} (15)

To efficiently compute M ,in, We first observe that our
definition of ~4 in Eq. (13) does not distinguish between
different thread allocations to the overloaded service classes.
This allow us to use dynamic programming to solve for M ,,,;,,,
where in each step we group all overloaded classes together
and then find the allocation that minimizes the cost of non-
overloaded classes.

The basic algorithm is outlined (graphically) in Figure 6,
where the algorithm is divided into n steps. In the first step,
n tables are created, one for each service class. Each table
contains the expected cost for any thread allocation to its
corresponding service class, given that all other service classes
are overloaded. We only need m™%* entries to capture this
expected cost. The next step combines the tables for classes

4In this case, each QoS level is defined in terms of worst-case response
time.

5This restriction avoids the situation where requests with long response
times have lower cost than those with short response times.

1 and 2 into a new table by finding the minimum cost for
each allocation given all possible combinations from the tables
for classes 1 and 2. Each additional step then combines the
resulting table from the previous step with the table of an
additional service class. At the end, the final table will contain
the minimum cost and by tracing back the allocation that
produced it, we can determine M.

VIl. EVALUATION

A realistic server environment is used to verify the correct-
ness of our derivations with respect to our original assumptions
and also demonstrate that the proposed scheme makes near-
optimal allocation of threads using our proposed techniques.
We used a similar experimental setup to that in Section I.
However, we configured a second Apache server to act as a
separate service class. Three parameters describe each service:
the arrival rate, \;, the listen queue length, B;, and the thread
allocation, m?. In the presented experiments, we set B; to
128 requests for i = 1,2. We have evaluated the system for
different buffer lengths; in all cases, our results were consistent
with those presented here.

Our evaluation is based primarily on response-time mea-
surements at the client machines. This response time is the
total wait time before a request is completed. It is the sum-
mation of three mostly independent components: connection-
establishment latency, propagation delay, and processing delay.
However, we are only interested in the effects of thread allo-
cation on the processing-delay component. Thus, by keeping
the first two components constant, we are able to obtain
an unbiased view of the performance of the different thread
allocations. We take two measures to minimize the variation
in these two components. First, we made sure that the client-
to-server network path is bottleneck-free. We also reduced the
connection-establishment timeout such that any packet drop
during that phase will not skew our results. We estimated that
the error introduced by the first two components to be less than
2 msec. Finally, because we need to conduct a large number of
experiments to cover the wide range of variable parameters, we
limit each run to 5 minutes and each experiment was repeated
20 times.

Our evaluation is split into two experiments: the first vali-
dates the correctness of our derivation and the second measures
the effectiveness of our optimal allocation policy. In all cases,
we assume that workload is homogeneous, and hence, we
only focus on the extent that the thread abstraction can be
used to provide client-side QoS guarantees. The effects of
heterogeneous workloads were studied in Section V. Finally,
due to space limit, we only present the results for the mixed
workload as it is considered a realistic representation of real
server workloads.

A. Experiment 1: Model Validation

We compared our predicted values of the response time with
the real measurements for the single-class server configuration.

1400

1200

1000

800

600

400

Response Time (msec)

200

0 20 40 60 80 100 120 140 160 180 200
Arrival Rate (req/s)

Fig. 7. Single class measurements

We used a single Apache service and varied the configuration
parameters across two dimensions: arrival rate, A, and thread
allocation, m". This is shown in Figure 7, where each line
represents the response time for a fixed allocation as the arrival
rate is increased.

The figure shows that our derivations can accurately predict
the expected performance of the underlying server for a wide
range of configuration parameters. There is over-prediction for
certain values of A. This, we believe, is due to the system
being critically-loaded. In particular, we can split the graph
into two distinct regions: underloaded and overloaded. These
are presented by the upper and lower parts of the S-shape
of each line, respectively. The transition region between the
underloaded and overloaded regions is very narrow and occurs
when X\ ~ uG(m?), where the system is critically-loaded.

Our analysis clearly exhibits the bimodal behavior of system
queue occupancy. Namely, when the arrival rate is slightly
below the saturation point, incoming requests are admitted
almost immediately into service with little queueing delay.
However, a slight increase in arrival rate can cause the delays
to increase many folds simply because the system cannot keep
up with incoming requests which causes queues to fill up. But
since queues have limited capacity, the service delay is limited
by the maximum length of such queues. The bimodal behavior
raises an interesting design decision issue when configuring a
web server, namely, when the system is underloaded, only a
small queue is necessary to avoid request dropping. The length
of the queue depends on the burstiness of arriving requests.
However, once the system is overloaded, longer queues do
not provide any performance advantage, but they increase the
response time of accepted connections.

B. Experiment 2: QoS Guarantees

In Section VI, we described a dynamic programing al-
gorithm to determine the thread allocation that can pro-
vide worst-case QoS guarantees. To verify our model, we
must, unfortunately, test all possible thread allocations, which

is computationally-prohibitive even with only two service
classes. In this subsection, we look only at a single step of the
algorithm, namely, given a thread allocation for a low-priority
service class, we want to predict the thread allocation for a
high-priority service class that can (statistically) guarantee a
maximum response time. We will show that for each QoS
requirement, our predictions are close to the measured values.
With this, we can conclude the robustness of our algorithm in
the general case.

Figure 8 shows the required number of threads for the high-
priority service when its arrival rate is A; = 100 reqs/s and
the low-priority service is allocated a fixed number of threads.
For instance, in the top plot where the low-priority service is
allocated 8 threads, if a 1-second delay guarantee is required,
then the high-priority service should be allocated at least 10
threads. The figure (for the measured and predicted lines) is
computed by first assuming that the low-priority service is
overloaded. A table that holds the thread allocation vs. worst-
case response time for the high-priority service is then created.
Finally, an inverse table lookup is used to determine the
minimum allocation that meets the response time requirement.

The figure shows that our equation-based optimization is
able to predict, with high accuracy, the thread allocation that
achieves the minimum cost. One can see that if a similar
process is used to create the initial tables in Section VI, then
the resulting prediction will be close to the optimal value. We
note that in this experiment we implicitly assumed a linear
cost function where hy(t) = t. Other cost functions can still
be used.

Overall, the above results show that our models are very
robust. They capture the expected performance of a multi-
threaded server as well as identify those instances where
the model fails. Our approach can be used to improve the
performance of existing QoS techniques.

VIll. RELATED WORK

The design and analysis of server QoS management tech-
niques have been addressed extensively in the literature, for
example, in [2,4,6,10,11,13,15,22,25,32]. In general, our
work complements existing QoS techniques by providing a
rigorous analysis of one particular approach, namely, using
the thread abstraction. Our focus is on determining the effec-
tiveness and limitations of using thread-allocation to provide
QoS guarantees or differentiation.

Several studies [1, 13, 22, 24, 25] have used thread allocation
to provide application-level QoS. Vasiliou [30] focused his
thread-based approach on providing a simple method for
creating new scheduling disciplines. Similarly, Pandey [25]
defined an object-oriented language to specify resource re-
quirements for different client requests. Both [30] and [25]
lack the translation between resource requirement and service
quality. In this paper, we introduced the speedup function
for this specific reason. We believe that it is a key element
for determining the true performance for any thread-based

25 T T T

T T
Measured —+—

o
2 Predicted -
(]
é 20
=
K]
S 15
o
<
e}
S 10t
=
'_
°
2 st
3
o
Q
@

0 1 1 1 1 1

0 500 1000 1500 2000 2500 3000
Maximum Response Time (msec)

30 T T T T T
m Measured —+—
B Predicted ---x---
£ 251
=
il
S 20
o
<
e
S 15 |
=
[=
e}
210t
>
S
o KK KX

5 1 1 1 1 1

0 500 1000 1500 2000 2500 3000

Maximum Response Time (msec)

Fig. 8. Optimal allocation that guarantees response time guarantees for high-
priority: (top) low-priority service is allocated 8 threads, and (bottom) low-
priority service is allocated 16 threads.

allocation.

To handle changing load conditions, the authors of [1,22—
24,32] proposed a feedback control mechanism to adjust the
allocation of threads to different service classes based on
on-line measurement of QoS metrics. Particularly in [24], a
control-theoretic approach is used to implement a Proportional-
Integrator (PI) controller that adapts to the load conditions
on the server. Unfortunately, this type of analysis (linear
control theory) is only suitable for steady request arrivals with
predictable service demands. In this paper, we have shown
the need for better monitoring techniques in the adaptation
process. We have also shown when the dynamic adaptation
will fail to provide the QoS differentiation.

IX. CONCLUSIONS

In this paper, we have provided a rigorous analysis of the
performance of thread-based QoS support. We also presented
an efficient optimization algorithm for determining the thread
allocation, if any, that minimizes the system’s cost, based on
our economic formulation. Through empirical validation in real
server environments, we showed that the derived results are
applicable to real-world systems.

The results presented in this paper are essential to the design
of any efficient thread-based QoS differentiation mechanism.
Three important conclusions can be drawn from our study.

First, based on the shape of the speedup function, we argue
that dynamic adaptation of thread allocation based on the
response-time measurements only is not sufficient to guarantee
the stability of the control mechanism. The controller must
continuously monitor the saturation point, which may shift
with changing workloads. Second, indirect interdependencies
between threads that arise from non-trivial sharing of system’s
resources can yield unpredictable performance interactions. We
have shown that even with a small number of threads dedicated
to 1/0-heavy workloads, the performance of other running ser-
vice can be affected significantly. Therefore, without accurate
understanding of resource requirements, the thread abstraction
alone cannot provide the necessary QoS guarantees, or even
QoS differentiation, to running services. Finally, when similar
or homogeneous services are being hosted on a single server
to provide client-side differentiation, the thread abstraction can
be used to provide effective and predictable statistical QoS
guarantees.

REFERENCES

[1] T. Abdelzaher and N. Bhatti, “Web Content Adaptation to Improve
Server Overload Behavior,” in International World Wde Web Confer-
ence, May 1999.

[2] J. Aman, C. K. Eilert, D. Emmes, P. Yocom, and D. Dillenberger, “Adap-
tive Algorithms for Managing Distributed Data Processing Workload,”
IBM Systems Journal, vol. 36, no. 2, pp. 242-283, 1997.

[3] M. F. Arlitt and C. L. Williamson, “Web server workload characteriza-
tion: The search for invariants,” in Proceedings of the ACM SIGMET-
RICS '96 Conference, Philadelphia, PA, April 1996.

[4] C. Aurrecoechea, A. Campbell, and L. Hauw, “A Survey of QoS
Acrchitectures,” Multimedia Systems, vol. 6, no. 3, pp. 138-151, 1998.

[5] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, M. Stemm, and R. Katz,
“TCP Behavior of a Busy Internet Server: Analysis and Improvements,”
in Proc. of IEEE INFOCOM '98, March 1998, pp. 252-262.

[6] G. Banga, P. Druschel, and J. Mogul, “Resource Containers: A New
Facility for Resource Management in Server Systems,” in Third Sympo-
sium on Operating Systems Design and Implemenation, February 1999,
pp. 45-58.

[7] P. Barford, A. Bestavros, A. Bradley, and M. E. Crovella, “Changes in
Web Client Access Patters: Characteristics and Caching Implications,”
in World Wide Web, Special Issue on Characterization and Perfromance
Evaluation, 1999, pp. 15-28.

[8] P. Barford and M. Crovella, “Generating Representative Web Workloads
for Network and Server Performance Evaluation,” in Proceedings of
Performance’ 98/ACM Sgmetrics' 98, May 1998, pp. 151-160.

[9] D. Bertsekas and R. Gallager, Data Networks. Prentice Hall, 1992.

[10] N. Bhatti and R. Friedrich, “Web Server Support for Tiered Services,”
|IEEE Network, vol. 13, no. 5, pp. 6764-71, Sep.—Oct. 1999.

[11] J. Bruno, J. Brustoloni, E. Gabber, B. Ozden, and A. Silberschatz,
“Retrofitting Quality of Service into a Time-Sharing Operating System,”
in USENIX Annual Technical Conference, June 1999, pp. 15-26.

[12] S. D. Committee, “SPECweb,” Tech. Rep., April
http://www.specbench.org/osg/web/.

[13] L. Eggert and J. S. Heidemann, “Application-Level Differentiated Ser-
vices for Web Servers,” World Wide Web, vol. 2, no. 3, pp. 133-142,
1999.

[14] A. Feldmann, Characteristics of TCP Connection Arrivals, ser. Self-
Similar Network Traffic and Performance Evaluation. John Wiley and
Sons, Inc., 2000, ch. 15, pp. 367-399.

[15] Hewlett Packard Corp., “WebQoS Technical White Paper,”
2000, http://www.internetsolutions.enterprise.hp.com/ we-
bgos/products/overview/wp.html.

[16] H. Jamjoom, C.-T. Chou, and K. G. Shin, “The Impact of Concurrency
Gains on the Analysis and Control of Multi-threaded Internet Services,”
University of Michigan Technical Report, Tech. Rep. CSE-TR-480-03,
2003.

1999,

[17]

[18]
[19]
[20]
[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

H. Jamjoom and K. G. Shin, “Eve: A Scalable Network Client Emulator,”
University of Michigan Technical Report, Tech. Rep. CSE-TR-478-03,
2003.

S. Keshav, An Engineering Approach to Computer Networking.
Addison-Wesley Publishing Company, 1997.

L. Kleinrock, “Time-Shared Systems: A Theoretical Treatment,” Journal
of the ACM, vol. 14, April 1967.

L. Klienrock, Queueing Systems, Volume Il: Computer Applications.
Wiley Interscience, 1976.

C. M. Krishna and K. G. Shin, Real-Time Systems. McGraw-Hill, 1997.
K. Lakshman, R. Yavatkar, and R. Finkel, “Integrated CPU and Network
1/0 QoS Management in an Endsystem,” in Proc. 5th International
Workshop on Quality of Service (IWQOS 97), 1997, pp. 167-178.

X. Liu, L. Sha, Y. Diao, J. L. Hellerstein, and S. Parekh, “Online
Response Time Optimization of Apache Web Server,” in Proc. 11th
International Workshop on Quality of Service (IWQOS 2003), 2003, pp.
461-478.

C. Lu, T. F. Abdelzaher, J. A. Stankovic, and S. H. Son, “A Feedback
Control Approach for Guaranteeing Relative Delays in Web Servers,” in
|EEE Real-Time Systems Symposium, Taipei, Taiwan, December 2001.
R. Pandey, J. F. Barnes, and R. Ollsson, “Supporting Quality of Service
in HTTP Servers,” in Symposium on Principles of Distributed Comput-
ing, 1998, pp. 247-256.

J. Reumann, H. Jamjoom, and K. G. Shin, “Adaptive Packet Filters,”
in Proceeding of IEEE GLOBECOM’01. San Antonio, Texas: |IEEE,
November 2001.

S. Sarvotham, R. Riedi, and R. Baraniuk, “Connection-level Analysis and
Modeling of Network Traffic,” in Proceedings of the ACM S GCOMM
Internet Measurment Workshop, November 2001.

O. Spatscheck and L. L. Peterson, “Defending Against Denial of Service
Attacks in Scout,” in Third Symposium on Operating Systems Design and
Implementation, February 1999, pp. 59-72.

H. Takagi, Analysis of Polling Systems. MIT Press, 1986.

N. Vasiliou and Hanan, “Providing a Dierentiated Quality of Service in a
World Wide Web Server,” to Appear in Performance Evaluation Review.
T. Woigt, R. Tewari, D. Freimuth, and A. Mehra, “Kernel Mechanisms
for Service Differentiation in Overloaded Web Servers,” in Proceedings
of the 2001 Annual Technical Conference, June 2001, pp. 189-202.

M. Welsh, D. Culler, and E. Brewer, “SEDA: An Architecture for Well-
Conditioned Scalable Internet Service,” in Proceedings of the 18th ACM
Symposium on Operating Systems Principles, October 2001.

R. W. Wolff, Stochastic Modeling and the Theory of Queues. Prentice-
Hall, Inc., 1989.

