
Scalable Parallel-Access for Mirrored Servers

Amgad Zeitoun Hani Jamjoom Mohamed El-Gendy
Department of Electrical Engineering and Computer Science,

The University of Michigan
1301 Beal Ave.

Ann Arbor, MI 48109-2122, USA
Tel: 1-734-936-0393
Fax: 1-734-763-8094�

azeitoun, jamjoom, mgendy � @eecs.umich.edu

Paper ID: 351-436

Keywords: Computer Networks, Internet Tools, Applications, Parallel Downloading.

Principle Author: Amgad Zeitoun

Email: azeitoun@eecs.umich.edu

Address:

3327 EECS Building
The University of Michigan
1301 Beal Ave.
Ann Arbor, MI 48109-2122
USA

Tel: 1-734-936-0393

Fax: 1-734-763-8094

We confirm that if the paper is accepted in the Applied Informatics 2002 (AI 2002) conference, one of the authors will attend
the conference to present the paper.

Scalable Parallel-Access for Mirrored Servers

Amgad Zeitoun Hani Jamjoom Mohamed El-Gendy
Department of Electrical Engineering and Computer Science,

The University of Michigan
Ann Arbor, MI 48109-2122, USA�

azeitoun, jamjoom, mgendy � @eecs.umich.edu

Abstract— To increase a client’s perceived throughput while transfer-
ring large multimedia files, a parallel-access approach can be used to
simultaneously transfer different pieces of a file from different mirrors.
Previously proposed approaches, however, either employ very aggressive
implementations with poor scalability or suffer from deployment difficul-
ties on the current Internet. Using trace-driven and real Internet experi-
ments, we show the effect of poor scalability and performance degradation
for some of the previous parallel-access implementations. In this paper, we
propose a hybrid scheme that (1) minimizes the added load on all mirrors
while (2) maximizing the client-perceived throughput. Our scheme uses
informed mirror selection based on round-trip time (RTT) measurements
as well as dynamic monitoring. While using less than 10% of the avail-
able mirrors, we show a decrease in transfer time by more than 85% over
traditional single-server transfers and 35% over other parallel-access im-
plementations.

Keywords— Internet Tools, Applications, Parallel Downloading, File
Transfer, Mirror Selection.

I. INTRODUCTION

Improving client-perceived throughput is an ongoing effort
in today’s Internet. Currently, files are replicated across differ-
ent mirrors to increase availability and decrease service time.
Simple mirroring services, like Tucows [1], have users select
from a list of available mirrors. In contrast, more complex
services, such as Akamai [2], automatically direct clients to
the closest mirror, represented by a caching proxy. While ei-
ther approach is proven sufficient for well-provisioned servers,
bulk data transfers, such as multimedia files, have rendered this
model insufficient for typical servers as it exacerbates the ef-
fects of heterogeneous link speeds and server reliability.

To minimize these effects, a parallel-access technique,
named paraloading [3], is presented in [3, 4] where an appli-
cation opens separate connections to all or a randomly cho-
sen subset of the mirrored servers. It then transfers differ-
ent blocks, representing different portions of the file, from
each mirror1. When the application finishes transferring a data
block, it immediately issues another request to the server to
get another block. Once all data blocks are received, they are
reassembled into the target file.

Parallel-access schemes are shown to have increased re-
silience to route and link failures and traffic fluctuations while
maximizing the effective transfer throughput of the requested
file. Furthermore, the authors of [3, 4] have argued that
parallel-access can be used to eliminate the mirror selection
problem, which is deciding the most appropriate mirror. While
their results are valid from a single client’s perspective, we�

“mirror” and “server” are used interchangeably in this paper

show that large-scale deployment will render their scheme use-
less.

The heart of the problem is scalability. A parallel-access
scheme must balance two conflicting criteria. On one hand,
it should scale the number of connections for a single client
to maximize the perceived throughput (we call this the perfor-
mance criterion). On the other hand, it must also minimize
the interference between the aggressiveness of the parallelism
and the performance of all clients and mirrors (we call this the
scalability criterion).

In this paper, we present a scalable parallel-access mecha-
nism that maximizes client throughput by dynamically select-
ing a small subset of mirrors based on the round-trip times
(RTTs) between the client and the servers. Our scheme also
uses dynamic monitoring to converge the selection to the set
of optimal servers. We show that this scheme has two primary
advantages. First, ranking mirrors based on RTT values pri-
oritizes mirrors with larger available bandwidths; as we will
show, choosing the closest mirrors satisfies the performance
criterion. Second, in most cases, only a small subset of mir-
rors, which varies across different clients, is needed to reach
this performance thus satisfying the scalability criterion.

This paper is organized as follows. Section II briefly reviews
related work. We motivate our server selection algorithm in
Section III and discuss the merits of informed mirror selection
on scalability and performance in Section IV. We present our
implementation for a parallel-access client in Section V. In
Section VI, we empirically evaluate some performance issues.
Finally, the paper ends with concluding remarks in Section VII.

II. RELATED WORK

The scalability of parallel-access was originally studied in
the context of improving a client’s throughput by initiating
multiple connections to the same server [5], typical of most
web browsers [6]. It was shown that the added aggressive-
ness may lead to unfair allocation of network resources. While
naive implementations of parallel-access do incur similar prob-
lems, our scheme is different for two reasons. First, by min-
imizing the number of selected mirrors and converging to an
even smaller number of fast servers our scheme minimizes ag-
gressiveness. Second, because a file is transferred using small
chunks from different servers, it is easy to see that the transfer
time is reduced resulting in an expected number of simultane-
ous connections that is close to its single connection counter-

part.

In [7], the authors use multicast to ensure the scalability of
accessing multiple mirrors in parallel. In their scheme, each
server uses Tornado Codes to split and encode each document
into � disjoint blocks such that a client can reconstruct the
document by only retrieving ����� blocks. By using a sepa-
rate multicast channel for each mirror, any client can subscribe
to multiple channels and retrieve the document in parallel. This
scheme has two drawbacks. First, it requires large modifica-
tions to existing non-Tornado aware servers and clients. Sec-
ond, even if such technology is universally adopted, it has lim-
ited scalability as it requires multiple multicast channels for
different documents. Similar to [3, 4], our approach integrates
well with the existing Internet infrastructure as it requires min-
imal changes to existing applications.

Our approach relies heavily on appropriate mirror selec-
tion and mirror ranking, which has been extensively studied
in the literature [8–15]. Previous work on mirror selection
can be classified into three categories: network-layer [10],
application-layer [8, 15], or measurement-based server selec-
tion [8, 9, 12, 13]. Each selection algorithm has focused on one
or more performance metrics (e.g., RTT, routers hop count, re-
sponse time, and available bandwidth). The effectiveness of
client-side mirror selection and provider-side mirror selection
was studied in [9] and [14, 16], respectively. Both studies have
concluded that dynamic selection (e.g., RTT, server load, and
available bandwidth) performs better than static selection (e.g.,
geographical location and hop count).

III. RATIONALE

Ensuring the scalability of a parallel-access scheme is a de-
sign challenge that must be given careful consideration. Naive
implementations will, at best, render their approaches useless.
In the worst case, the added aggressiveness may overload or
even crash the target servers. As mentioned in Section I, two
criteria must be considered when designing a parallel-access
scheme, namely the performance and scalability criteria. More
specifically, the performance criterion should minimize the av-
erage transfer time for all clients. On the other hand, the scala-
bility criterion should minimize the degree of parallelism while
uniformly distributing the load over all mirrors.

Meeting these requirements directly translates to an optimal
selection algorithm where a set of � clients must choose from�

mirrors with limited capacity (mainly bandwidth) subject
to the “minimize average transfer time” constraint. Unfortu-
nately, this can be mapped to the knapsack problem, an NP-
complete problem [17], which is almost impossible to solve
in real-world deployment scenarios. We, thus, try to obtain
a near-optimal solution by proposing a dynamic selection al-
gorithm. In our approach, each client acts independently and
chooses the target mirrors based on local measurements.

Designing a dynamic selection algorithm is not a straight-
forward task especially without server-side collaboration, e.g.,
reporting system load and available bandwidth. Alternatively,

TABLE I

MIRRORS USED IN THE CLIENT PERCEIVED THROUGHPUT EXPERIMENT

Mirrors Number File Size Coverage

Akamai 262 2.76MB Worldwide
FreeBSD 52 2.8MB Worldwide
Tucows 148 2.0MB USA

we focus on client-side measurements, namely using measured
RTT values to all mirrors to improve mirror selection. Parallel-
access scheme presented in [4] does not elaborate any selec-
tion scheme, instead it uses all available mirrors in the parallel
download. We do not analyze their scheme in this paper since
it clearly has poor scalability and high overhead. On the other
hand, Paraloading [3] selects a random subset from all avail-
able mirrors based on the Degree of Parallelism (DoP). The
DoP is the number of opened parallel connections to different
servers. Hence, we compare two selection algorithms in this
paper:
� Random selection: chooses a number of servers randomly
from a list of all available mirrors. The number of servers cho-
sen depends on the required DoP. When the DoP is one, server
selection is analogous to the conventional single server selec-
tion exists in typical mirroring service (e.g., Tucows), where a
user selects a mirror at random.
� RTT-based selection: dynamically chooses a subset of all
available mirrors based on measured RTT values to all mirrors.
For a DoP equal to � connections, RTT-based selection chooses
the � servers with the smallest RTT values.

Unfortunately, it is intractable to perform “real” measure-
ments to evaluate the scalability and performance of these se-
lection algorithms at both client-side and server-side. We also
believe that simulation alone will not capture the true behav-
ior of clients and servers. We therefore use a combination
of trace-driven analysis and client-side measurements to deter-
mine the load-balancing and improvements in the transfer-time
of the selection algorithms. These are presented in the follow-
ing two experiments. At the end of this section, we show that
the combination of the results makes RTT-based selection the
ideal candidate for large-scale deployment scenarios.

A. Experiment 1: Client Perceived Throughput

In this experiment, we compare the effectiveness of both
Random and RTT-based selections in satisfying the perfor-
mance criterion. We based our analysis on measurements from
three different mirroring services on the Internet: Akamai [2],
FreeBSD [18], and Tucows [1]. From each mirror service, a
reasonable size subset of all available mirrors is chosen (see
Table I). We used several machines to act as clients request-
ing files from each server after measuring the corresponding
RTT. Each request was repeated 20 times over a period of one
week and the client perceived transfer rate for each server,�	��
���
������
�������
���� ��� ����� , was averaged over the 20 measurements. Due
to space limitation, we only present results collected from a
machine located at the University of Michigan in the US.

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8 9 10 11 12 13

H
yp

ot
he

tic
al

 M
ax

im
um

 R
at

e
(K

B
/s

)

Degree of Parallelism (DoP)

Largest Rate
Random

RTT-based

(a) Akamai

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13

H
yp

ot
he

tic
al

 M
ax

im
um

 R
at

e
(K

B
/s

)

Degree of Parallelism (DoP)

Largest Rate
Random

RTT-based

(b) FreeBSD
Fig. 1. The average hypothetical maximum rate perceived when using Largest Rate selection, Random selection, or RTT-based selection.

To estimate the expected performance improvement at var-
ious DoP, a hypothetical maximum rate (HMR) is calculated
by summing up the transfer rates of the corresponding servers
at a given DoP. The HMR is an overestimate for the actual
perceived aggregate rate by the client, because it assumes that
links are bottleneck free. Yet, it is still a good indication of
how well the set of selected servers can perform. Fig. 1 shows
the average HMR, with 95% confidence interval, perceived by
our client when using Random selection or RTT-based selec-
tion for Akamai and FreeBSD mirrors (Tucows exhibits similar
performance and is not shown due to space limit). The figure
also compares both selection algorithms against Largest-Rate
selection, the optimum by definition, representing the upper
bound of throughput that can be perceived by the client at a
given DoP. Largest-Rate selection simply chooses the fastest
servers and, in our case, is computed a posteriori to data col-
lection.

We can clearly see that Random selection performs the worst
(on average 50% lower). This is simply because for any client,
there are only a small subset of available mirrors that repre-
sent the fastest servers. This decreases the probability of se-
lecting the fastest servers and is represented by the smaller
slope of Random selection compared with the other two al-
gorithms in Fig. 1. For example, in the FreeBSD mirrors, the
HMR achieved by the Random selection with DoP of 11 can
be achieved with DoP of 3 for the Largest-Rate selection. This
compares with DoP of 4 in the case of RTT-based selection.
The informed nature of the RTT-based selection has clearly
produced favorable results, especially when the set of mirrors
is well-provisioned (such as Akamai). In the next experiment,
we show that this improved performance of RTT-based selec-
tion is crucial for server-side scalability.

B. Experiment 2: Server-side Scalability

A selection algorithm has a direct impact on the server load;
for bulk data transfer it can be reflected by the clients’ work-
load on each server. The clients’ workload represents the ex-
pected number of connections perceived by a server. Thus, we

define a scalable selection algorithm as one that will increase
the clients’ workload on any server by only a constant factor.

The combination of improved performance and good load
balancing determines the true scalability of the underlying al-
gorithm. The basic rule is that if, for instance, the number
of parallel connections was doubled from � to � � connections
and was uniformly distributed across all servers, then in or-
der to keep the expected workload constant on all servers, the
transfer time should be reduced by 50%. On the other hand,
if the new � connections are directed to slow servers, the per-
formance of the selection algorithm only improves marginally,
but, the workload will increase proportionally with the number
of simultaneous connections. This is exactly the problem with
the Random algorithm.

Clearly, a Random selection algorithm uniformly distributes
the clients’ workload across all servers. However, experiment 1
showed that in order for Random selection to match the opti-
mal performance of Largest-Rate selection, a larger number of
servers must be chosen (i.e., larger DoP). Therefore, increas-
ing the DoP for the Random selection improves the throughput
marginally while increasing the workload.

Focusing on RTT-based selection, we use trace-driven anal-
ysis to give a general insight into its expected load balancing
behavior. We use, as servers, 15 Traceroute Gateways (TGs)
located in the US. TGs [19] are distributed servers that per-
form traceroute— on-demand — to different hosts on the
Internet. We collect 11,814 unique IPs, distributed worldwide,
from the Web log of a popular Web server. Viewing these IPs
as clients, we are able to determine the RTT values from the 15
TG servers to these 11,814 clients. Since, the RTT reflects the
total delay of the forward and backward paths between hosts,
it is independent of the side that originated the measurement.
Therefore, we can accurately view our measurements as RTT
values from 11,814 clients to the 15 TG servers.

From these measurements, we analyze the expected clients’
workload on each server. For each client, we extract the closest
� servers based on RTT selection (������� �) and calculate the
clients’ workload on each server by summing up the number

Fig. 2. The percentage of clients’ workload perceived by different servers
when using RTT-based selection to select the best � servers.

of clients directed to it. Fig. 2 shows the percentage of clients’
workload on each server for � ��� and � ��� . For � ��� , there
are 3 regions in the figure, the region of most popular servers
(first 4 servers), the region of uniformly distributed workloads
for different clients (servers 5 through 10), and the region of
bad servers (servers 11 through 15). When the DoP increases
to 4 (� ���), RTT-based selection does not proportionally in-
crease the load on the most popular servers, instead the clients’
workload is distributed to other less popular servers.

We conclude that since clients are perceiving varying RTT
measurements depending on their locations with respect to the
set of mirrors, RTT-based selection does not increase the num-
ber of connections on maximally-loaded servers (i.e., popular
servers). Instead, RTT-based selection will distribute clients’
workload on different servers. Briefly, RTT-based selection
balances our two design criteria for the following reasons:

1. Performance criterion. TCP, which is used by FTP and
HTTP, is biased against connections with large RTT [20], thus
when two connections have the same bandwidth but different
RTTs, the transfer rate of the larger RTT connection will be
worse than that of the smaller RTT connection due to slow
returning acknowledgments. RTT-based selection thus selects
those servers with potentially faster transfer rates.
2. Scalability criterion. The selected sets of servers vary
across clients since clients are scattered across the Internet and
measure different RTT values to all mirrors. This behavior bal-
ances clients’ workload across all servers. Furthermore, be-
cause of the small DoP that is required to maximize client per-
formance, RTT-based selection is expected to minimally in-
crease the clients’ workload on all servers.

The previous two experiments have shown that RTT-based
selection is the ideal candidate that combines both good perfor-
mance and load-balancing. Nevertheless, there are two points
that must be considered. First, while Random selection has
consistently performed worse than its counterpart, it may still
be sufficient for clients with slow connections (e.g., dial-up
modems [4]). Second, Random selection has the least over-

head, since it does not require any client-side or server-side
measurements.

IV. INFORMED MIRROR SELECTION

Ideally, clients should be able to accurately select the ex-
act number of servers that are necessary to optimize their per-
formance goals (mainly minimize transfer time). We loosely
define a client performance criterion based on the number of
fastest servers (ones with highest throughput) that he/she must
select. A mirror selection algorithm is then viewed as a func-
tion that maps the fastest servers, for a given client, from a
large set into a smaller subset. The size of the selected sub-
set, is determined by the underlying selection algorithm and
the mirrored servers. For example, in Fig. 1(b), RTT-based se-
lection requires a larger subset of selected servers to realize an
aggregated rate equivalent to the fastest � servers.

More formally, let �	� be the smallest set of selected servers
that includes the fastest � servers. Since, the RTT ranking
of � servers does not necessarily provide a one-to-one map-
ping to the corresponding fastest � servers, the size of this set
(
 ����
�
 �) is modeled as a random variable that depends on
the selection algorithm and the mirrored servers. Therefore, a
probability value is associated with
 � �
 to indicate the likeli-
hood that the fastest � servers are included in the set ��� . For
a given mirror service, we can construct a graph that relates �
and
 � �
 with a given probability � . Fig. 3 shows
 � �
 that maps
the best � servers with probability ��
���� � , where ��� ����� � .
From the figure, we clearly see that the relation between � and

 ����
 is dependent on the mirroring services. For example, to get
the best 2 servers, we need to select the first 2, 4, and 9 servers
from the RTT-ranked list for Akamai, FreeBSD, and Tucows,
respectively.

Constructing a graph like the one in Fig. 3 requires both
measuring the RTT as well as transferring the actual file from
each server. This is obviously an impractical approach and, un-
fortunately, has no alternative. These measurements, however,
can be performed by a separate service on the Internet. Unfor-
tunately, measuring RTT to all mirrors, while substantially less
than transferring the file, introduces overhead. This overhead
can further be minimized by using other services that provide
end-to-end delay estimation on the Internet, such as IDMaps
infrastructure [21].

V. IMPLEMENTATION

We implemented an FTP client that supports parallel-access
(PA-FTP). Fig. 4 shows our general design as well as the six
basic steps that are taken when transferring a file.

1. A user submits a request to the PA-FTP client.
2. The manager thread measures the RTTs to all available
servers. It then selects a smaller subset defined by the maxi-
mum DoP. In our example, it selects servers b and c.
3. The manger partitions the file into two blocks proportional
to the corresponding RTT values. It assigns each block to a
worker thread.

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12

|Ι κ
|

Best κ Servers

Akamai
FreeBSD

Tucows

Fig. 3. The minimum size of � ����� for RTT-based selection required to map
the best � servers with probability ���	�
 , for Akamai, FreeBSD, and Tucows
mirrors.

4. Each thread independently connects to the assigned server
and requests its block using FTP [22]. FTP allows servers to
transfer a file starting from a specific offset by using the restart
(REST) command. When a client receives the last byte in the
current requested block, it sends an abort (ABOR) command to
the remote server to stop sending any more bytes.
5. Periodically, as the file is being transferred, the monitor
thread will dynamically adjust the block allocation to maxi-
mize the client’s throughput (explained later).
6. Finally, once all blocks are retrieved, the manager reassem-
bles the file and returns it to the user.

Theoretically, the total time to transfer a chunk of data from
a specific server is bounded by the following Equation:

� � �
��
��������� �

� � � � � �
� �������
 �� �

��� � � � � � � � � �� (1)

where � � is the number of data blocks requested from mirror!
. � � and � � represent the block size and the server’s speed,

respectively.
� � ����� ��
 �� represents the time between sending the

request command to the server and receiving the first byte of
the data.

� � � � � � � � � � �� represents the time needed to establish a
connection with the remote server.

To minimize the total transfer time, the amount of data trans-
ferred from each server (the first term in (1)) is adjusted such
that

� � is equal for all servers that are accessed in parallel.
The overhead of requesting all blocks must also be minimized
(second term in (1)). We use dynamic monitoring to perform
these optimizations. By monitoring the progress of all connec-
tions, the data block of the slowest connection is reassigned
to a faster one that is about to finish. This algorithm is de-
picted in Fig. 5 and has three properties. First, it closes a con-
nection only if it finds an alternative that is faster. Second,
fast servers will always be maximally utilized. Third, by using
large blocks, it minimizes the term � � � � �������
 �� in (1).

Besides improving clients’ throughput, dynamic monitoring
also converges to the set of fastest servers. This effectively re-
duces the DoP used by each client and, thus, improves the scal-

Fig. 4. Architecture of our Parallel-Access FTP client

Algorithm 1 (Block Assignment Optimization)

1. for ("$#&%�')(*(,+�-�./.10�+�23"4-�.65�7)
2. TOC(i) := estimated time of completion for connection i
3. if(8�9;:=<>"3?A@B.C0�DE2�23"4FG0H2I-KJ�0�LNME-�LOFP-QJE23"4FR"3SN'N23"3-�.)
4. Find slowest connection (max TOC)
5. if (LT0�'U(V(V-O+�')23"3-�.XW�"3(V(U"4F=JELT-�Y)0H23LT'N.65�M�0�LA23"4FG0)
6. Kill slowest connection and assign its block to i

Fig. 5. Dynamic monitoring algorithm

ability of our clients. Another way of characterizing dynamic
monitoring is that it minimizes most inefficiencies that were
introduced by RTT-based selection (mainly having the size of
the selected server set
 � �
1Z �).

VI. EVALUATION

We verified the effectiveness of the performance criterion of
our design on the FreeBSD mirrors. Using our PA-FTP client,
files ranging from 100KB to 10MB are transferred 20 times
while varying the DoP from one to seven. Because our clients
sits behind a fast network link, files that are less than 500KB in
size showed marginal improvements. Due to space limitation,
we only show results for two file sizes 2.8MB and 10MB. We
compared our results to that of Random selection as well as to
the traditional single-server approach. Fig. 6 shows the average
transfer time for each file at different DoPs for Random and
RTT-based selections.

The general advantages of parallel-access are indicated by
the dramatic decrease in transfer time (85%) as the DoP in-
creases beyond 1 (DoP=1 indicates transferring from a single-
server). Furthermore, the average number of failures for trans-
fers from a single server is more than 5% while for the parallel-
access approach is 0%, which shows the advantage of parallel-
access scheme in masking server failures.

RTT-based selection outperforms the Random selection
even at higher DoP: 50% improvement at DoP = 3 and about
35% at DoP Z 3 (Fig. 6(a) and (b)). The average transfer time,
however, only improves marginally when the DoP is increased
from 5 to 7, especially for the RTT-based selection. This shows
the property of diminishing returns due to the following rea-

(a) 2.8MB file size (b) 10MB file size

Fig. 6. The average transfer time at DoP of 1, 3, 5, and 7 for Random and
RTT-based mirror selections for (a) 2.8MB and (b) 10MB file sizes.

sons:
� Requesting a smaller amount of data from each server (be-
cause we are splitting the same pie into a larger number of
small pieces) will decrease the transmission time and make the
overhead time significant.
� Because the connection time and request time overheads de-
pend on the server’s RTT and load, a fast server may finish
transferring a block before a slow server even sends the first
byte of another block. The dynamic monitoring will reassign
the block from the slow server to the fast server, rendering the
slow server useless.
� The down-link connection of the client is saturated, so in-
creasing the number of servers will not increase the perceived
rate.

VII. CONCLUSIONS

Using a Parallel-access approach for transferring files re-
duces transfer time and increases resilience to server and link
failures. In general, increasing the DoP to a reasonable limit
will improve the client-perceived throughput. We have showed
that mirror selection plays a crucial role in determining the
scalability of the parallel-access technique and the perfor-
mance perceived by the end users. We also argued that RTT-
based selection solves these problems by providing two key
advantages. First, it correctly maps some of the fast servers
into a small subset of mirrors that can be accessed in paral-
lel. Second, it limits the probability of overlapping sets. Our
implementation of the PA-FTP client that combines RTT-based
selection with dynamic monitoring showed the effectiveness of
our new technique in improving the transfer time and enhanc-
ing the scalability of the parallel-access.

Although, we have setup our experiments to mimic the char-
acteristics of real scenarios as closely as possible, we believe
that large scale deployment of our parallel-access technique
will further provide more insight into the performance of the
new approach. Nevertheless, our final conclusions are still
valid.

REFERENCES

[1] “Tucows inc.,” http://www.tucows.com.
[2] “Akamai technologies, inc.,” http://www.akamai.com.

[3] A. Miu and E. Shih, “Performance Analysis of a Dynamic Parallel
Downloading Scheme from Mirror Sites Throughout the Internet,” url:
http://nms.lcs.mit.edu/˜aklmiu/comet/paraload.html, Dec. 1999.

[4] Pablo Rodriguez, Andreas Kirpal, and Ernst Biersack, “Parallel-Access
for Mirror Sites in the Internet,” Proc. of IEEE INFOCOM ’00, pp. 864–
873, March 2000.

[5] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, M. Stemm, and
R. Katz, “TCP Behavior of a Busy Internet Server: Analysis and Im-
provements,” Proc. of IEEE INFOCOM ’98, March 1998.

[6] “Netscape Navigator,” http://www.netscape.com/.
[7] J. Byers, M. Luby, and M. Mitzenmacher, “Accessing Multiple Mirror

sites in Parallel: Using Tornado Codes to Speed Up Downloads,” Proc. of
IEEE INFOCOM ’99, Apr. 1999.

[8] Robert L. Carter and Mark E. Crovella, “Server Selection using Dy-
namic Path Characterization in Wide-Area Networks,” Proc. of IEEE
INFOCOM ’97, April 1997.

[9] Sandra G. Dykes, Clinton L. Jeffery, and Kay A. Robbins, “An Empirical
Evaluation of Client-Side Server Selection Algorithms,” Proc. of IEEE
INFOCOM ’00, 2000.

[10] P.R. McManus, “A Passive System for Server Selection within
Mirrored Resource Environments Using AS Path Length Heuristics,”
http://proximate.appliedtheory.com/, Jun. 1999.

[11] A. Myers, P. Dinda, and H. Zhang, “Performance Characteristics of Mir-
ror Servers on the Internet,” Proc. of IEEE INFOCOM ’99, Mar. 1999.

[12] Katia Obraczka and Fabio Silva, “Looking at Network Latency for
Server Proximity,” Tech. Rep. USC-CS-99-714, University of Southern
California, 1999.

[13] M. Sayal, Y. Breibart, P. Scheuermann, and R. Vingralek, “Selection Al-
gorithms for Replicated Web Servers,” Performance Evaluation Review,
vol. 26, no. 3, pp. 44–50, Dec 1998.

[14] Anees Shaikh, Renu Tewari, and Mukesh Agrawal, “On the Effective-
ness of DNS-based Server Selection,” Proc. of IEEE INFOCOM ’01,
2001.

[15] M. Stemm, R. Katz, and S. Seshan, “A Network Measurement Archi-
tecture for Adaptive Applications,” Proc. of IEEE INFOCOM ’00, pp.
2C–3, Mar. 2000.

[16] V. Cardellini, M. Colajanni, and P.S. Yu, “Dynamic Load Balancing on
Web Server Systems,” IEEE Internet Computing, pp. 28–39, May-June
1999.

[17] Michael R. Garey and David S. Johnson, Computer and Intractability: A
Guide to the Theory of NP-Completeness, W. H. Freeman and Co., New
York, 1979.

[18] “FreeBSD,” http://www.freebsd.com.
[19] “Traceroute gateways,” http://www.tracert.com.
[20] S. Floyd, “Connections with Multiple Congested Gateways in Packet-

Switched Networks,” ACM Computer Communication Review, vol. 21,
no. 5, pp. 30–47, October 1991.

[21] P. Francis et al., “An Architecture for a Global Internet Host Distance Es-
timation Service,” Proc. of IEEE INFOCOM ’99, pp. 2B–1, Mar. 1999.

[22] J. Postel and J. Reynolds, “File Transfer Protocol (FTP),” RFC 959,
Internet Engineering Task Force, Oct. 1985.

