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Figure 1: Change in messages sent across compute
nodes and total runtime.
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1. INTRODUCTION

The explosive growth of “big data” is giving rise to a
new breed of graph processing systems, such as Pregel [5].
Pregel and its derivatives follow the Bulk Synchronous Par-
allel (BSP) programming model, where vertices send mes-
sages asynchronously to other vertices over a series of glob-
ally synchronized supersteps (iterations). As these systems
scale across large infrastructures, communication overhead
dominates the cost of the applications’ runtime.

This poster describes our work in characterizing and min-
imizing the communication cost of BSP-based graph pro-
cessing systems when scaling to 4,096 compute nodes. To
the best of our knowledge, this is the largest deployment
to date. Existing implementations generally assume a fixed
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Figure 2: As BSP system scales, the execution per
compute node decreases, but the communication in-
creases. Compute time excludes initialization cost
and overhead of combiners.

communication cost. Large graphs are first partitioned into
smaller subgraphs (clusters), which are then mapped onto
the compute infrastructure, irrespective of the network cost
between compute nodes. This is sufficient in small deploy-
ments as the BSP programming model masks small varia-
tions in the underlying network by overlapping computation
and communication. Because the per-vertex computation is
typically small, in large scale deployments, variations in net-
work topologies and costs cannot be fully masked.

There are numerous systems that tackle the scalability
problem. Most notably is PowerGraph [1], which replicates
highly connected vertices to reduce cross partition communi-
cation. As the system scales to thousands of compute nodes,
random replication does not fully address network cost prob-
lem. Also recently, Hoefler and Snir [2] evaluated differ-
ent topology mapping strategies. While promising, their
approach in using the Reverse Cuthill-McKee (RCM) algo-
rithm cannot scale to map millions of vertices.

In this poster, we first quantify the impact of network
communication on the total compute time of a BSP system.
We then propose an optimization that improves the scala-
bility of RCM; we describe an improved vertices replication
strategy to further reduce the communication overhead.

2. COMMUNICATION IMPACT

We ran our experiments on an IBM Blue Gene/P super-
computer, using 4 racks, each with 1024 PowerPC-450 CPUs
(4 cores at 850MHz and 4GB RAM per CPU). While individ-
ual compute nodes are relatively slow in today’s standards,
the focus of the work was on studying the relative impact of
communication on the overall runtime. More importantly,



the Blue Gene/P allowed us to conduct experiments on a
broad range of compute nodes, which would otherwise be
more difficult to perform on an x86 compute cloud. We
used Mizan [3], a BSP system that implements the Pregel
programming model, to run the PageRank algorithm on the
arabic-2005 dataset [4], with approximately 23M vertices
and 640M edges. We varied the number of compute nodes
from 256 to 4096. In each experiment, the dataset is par-
titioned using a hash-based scheme and distributed across
the participating compute nodes. Finally, we instrumented
Mizan to measure the computation and communication time

Figure 1 shows the increase in messages as the number
of compute nodes is increased. Similarly, Figure 2 shows
the percentage of time spent in performing computation
and communication. The result (right y-axis in Figure 1)
is a gradual plateau of improvements in end-to-end runtime.
These results confirm our intuition; we are in the process of
testing much larger datasets and other graph mining algo-
rithms. Our goal is to limit the effects of communication
overhead in large scale deployments.

3. NETWORK-AWARE VERTEX PLACE-
MENT

Basic Approach. It is well known that matrices can rep-
resent both graphs and communication costs between com-
pute nodes. In our setting, we have two matrices: the first,
71'37 captures the expected communication between any two
vertices in input graph G when running algorithm A; the
second, ¢, captures the communication costs between two
compute nodes.

These two adjacency matrices are sparse. Applying the
Reverse Cuthill-McKee (RCM) algorithm reduces the band-
width of these sparse matrices [2]. The result is two ma-
trices that have mostly zero values away from the diagonal.
For Wé7 it implies that vertices that communicate with each
other are placed closer to each other. Similarly, for m¢c, it
implies that compute nodes with higher bandwidth (or lower
latency) are placed closer to each other. The last step then
is to simply partition the matrix and map wé onto mc.
Practical Issues in using RCM. In this poster, we high-
light three practical issues. First, & is potentially very
large. For a billion node graph, 71'3 becomes billion by bil-
lion in size. Second, each element in the matrix represents
the expected communication (number of messages) between
the vertices when running an arbitrary algorithm A. Third,
in cases where the computation is running in the cloud, n¢
is not known a priori and needs to be measured.

System Implementation of Placement Algorithm.
Figure 3 highlights our approach in solving the first chal-
lenge. We assume that the remaining two challenges, while
important, can be approximated. We first (Step 1) identify
the edge degrees for all vertices and subsample the input
graph to include only high-degree vertices. Then, we run
RCM topology mapping on the smaller graph (Steps 2 and
3). The partitioned graph may still have high communica-
tion around the edges. We use vertex replication (Step 4)
to minimize communication across partitions. Finally, we
bring back low degree vertices (Step 5).

Our use of RCM has two key advantages over traditional
partitioning techniques (like min-cut). First, it provides a
natural ordering of partitions, such that partitions that com-

Input graph: STEP 1: Subsample highly-
connected vertices, and
create adjacency matrix

0100000
1011100
0101000
0110111
0101000
0001001
0001010

STEP 2: Apply Reverse STEP 3: Partition
Cuthill-Mckee refactored matrix:

0110000 0110/000
1010000 1010000
1101110 1101110
0010010 0010/010
0010010 0010/010
0011101 0011101
0000010 0000010

STEP 4. Replicate around
edge cuts .17

STEP 5. Bring back leaf
vertices
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Figure 3: Example algorithm

municate with each other will be placed closer to each other.
Second, for the same reason, it identifies good candidates for
replication. We are currently in the process of evaluating our
algorithm on large datasets.
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